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Abstract: Large Language Models have become popular for performing different tasks like 
summarization, translations, classification and code generation. This has led to different 
types of research where models are observed and their architecture is improved for better 
performance, including the tasks mentioned above. Other studies branch into finding a better 
way to generate responses through these LLMs while treating them as a black box. There are 
studies where the models are specially analyzed for the code generation task. We follow this 
category of studies to analyze the generated code for security weaknesses like CWEs. A few 
different publicly available models were used and prompted to provide the implementation of 
pseudo-random number generation for prime numbers. The purpose of this study is to find out 
if these generated prime numbers will be secure enough to be used for cryptography algorithms 
such as RSA. 
Keywords: Large Language Models, Code Generation, Security Weaknesses, CWEs, RSA.

INTRODUCTION

Ron Rivest, Adi Shamir, and Leonard Adleman 
developed the popular algorithm: RSA. RSA 
stands for the initials of the authors. This 
algorithm is widely used for cryptographic tasks. 
Such an algorithm relies on the generation of 

two prime numbers: p and q. These numbers are 
used to compute the public and private key pairs 
of the key (Mlanov, 2009). A public key contains 
the product of its prime numbers, called the 
public modulus (n = p * q). The public modulus 
is in line with the idea that factoring the public 
key will be a computationally intensive task.
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During the practical implementation of this 
algorithm, it is very important that previously 
generated random numbers are not repeated, 
otherwise, it can cause two issues:

First, for two given keys k1, k2 which are 
generated using p1, q1, p2, q2 respectively, then if

 p1 = q1 and p2 = q2 ⇒k1 = k2.

As k1 and k2 are the same key, in that case, if 
k1 is produced by the attacker, then a private 
key related to k1 will allow decryption of all the 
messages encrypted by k2.

This idea has been explored on a large scale 
in “Ron was wrong, Whit is right” (Lenstra et al., 
2012). They found that, due to the repetition of 
previous random choices, 0.27 million keys were 
vulnerable, as they had the same moduli. This 
number represented 4% of the total collected 
RSA keys.

Second, for two given keys k1 and k2, which 
are generated using p1, q1, p1, q2 respectively, 
then both q1 and q2 can be obtained using the 
greatest common divisor:

GCD(k1, k2) = p1

q1 = k1/p1

q2 = k2/p2

This implies that for both keys k1 and k2, 
private keys can now be derived. Hence, in this 
scenario, where two public keys contain one 
common prime, both keys can be compromised.

Through this study, the code generated 
when a large LLM is prompted to write an 
implementation for generating random prime 
numbers is analyzed. The three used models 
are GPT-3.5 (OpenAI, 2023), LLama2 (Meta, 2023), 
Microsoft/phi1(Microsoft, 2023). The paper is 
organised as follows. The following section 
briefly discusses the related work, and the 
next one presents the setup of the present 
experiment. The next section illustrates the 
results obtained, and the final one provides 
the conclusion of the present work and some 

prospects for the development of the proposed 
research. Appendix is added with the code 
generated by the models. 

RELATED WORK

Similar studies are conducted on the quality of 
responses generated by AI. Such studies include 
analyzing capacity to write academic writing 
(Buruk, 2023), security weaknesses in Copilot 
generated code (Fu et al., 2023), or analyzing if 
the model is as bad as humans at introducing 
vulnerabilities (Asare et al., 2023). They show 
various findings, such as that 33.3% of the 
analyzed cases (Owura et al., 2023) produced 
vulnerable code, while Fu et al. (2023) show that 
up to 39.4% of snippets produced vulnerable 
code in Python and 46.1% in C++.

A common theme in these studies is that they 
treat the model as a black box, i.e., studies don’t 
try to train the model or change the parameters 
of the model. They focus on analyzing the model 
as if it were a service that could be prompted. A 
similar idea is used in this study as well, but the 
focus is more specifically on generating random 
prime numbers.

AI popularity has also triggered studies 
where this black box theme is used to analyze 
the performance of prompting. Studies show 
that following a set of mechanisms (Yuan et 
al., 2022) can generate different results and 
that models can be guided to provide better 
results. Similarly, Brown et al. (2020) present the 
increase in model accuracy, as zero-shot, one-
shot and few-shot strategies are used.

EXPERIMENT SETUP 

Different prompting strategies are taken into 
consideration when generating different code 
snippets. The same strategy was used for the 
models GPT-3.5 (OpenAi, 2023) and LLama2 
(Meta, 2023), while, for Microsoft/phi1, a 
different strategy was used. The first two model 
prompts were categorized as such:

• Zero-shot: prompt was provided as a single 
sentence.
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• One-shot: prompt included a single 
sentence and an example of the code 
snippet to guide a secure random prime 
generation.

• Few-shot: prompt was provided in 
multistep, i.e., a simple sentence was 
followed by a response, and then the 

response was added back, in order to 
generate the final code snippet. 

• Few-shot-CoT (Chain of Thought): prompt was 
provided as a chain of thought to explain why 
certain examples were better than others.

Some examples of these prompts are provided 
in Figure 1.

Figure 1. (A) Zero-shot prompt; (B) Zero-shot prompt with the word secure in it; (C) One-shot prompt with 
one example

The Microsoft/phi1 model was loaded on a 
machine as no public interface was provided. 
The model was downloaded from Hugging 
Face and loaded using the torch library. Then 
prompts were created following the example 

provided on the model main page (Microsoft, 
2023). 

Figure 2 shows a prompt from Microsoft/phi1. 
Similarly, two other prompts were used [see 
Appendix].

Figure 2. Prompt for the Microsoft/phi1 model
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Once the prompt output was collected, it was 
analyzed by humans to identify the following 
characteristics:
C1: Are large primes generated? i.e., the number 

is greater than or equal to 1024.
C2: Does code contain cryptographically secure 

methods? i.e., any CWE is present.
C3: Can the generated scripts run? If the code 

is valid, then a few code fixes are made in 
order to make the code run. If many changes 
are needed, it means that the code is not 
valid. If the code can run in a reasonable 
time, then it is valid.

C4: Run the valid scripts to generate 10K prime 
numbers and detect if the prime numbers 
are repeated.

RESULTS 

The experiment showed clearly that in several 
instances, the functions generated by the AI 
models use Python’s default random API. This API 
is not cryptographically secure (Python Software 
Foundation, 2024). Figure 3 shows the warning in 
the documentation provided for Cpython. This 
API is also marked (Ruohonen et al., 2021) to be 
associated with CWE-338 (MITRE, 2020).

Figure 3. The warning presented by the Cpython documentation of version 3.12.1.

Some results showed that the scripts generated were not suitable to be run, such as:

import random

def get_random_prime_number(n):
   prime_numbers = []
   for i in range(n):
      prime_number.append(random.randint(1,100...

The dots after 100…, indicate a lengthy 
continuation of zeros. This is the case where it 
seems that model is just repeating itself after 
providing some tokens. In this instance, the 
result is not very useful and it would require the 

developers to write a more extended code to 
make the program functional.

There were also successful instances where 
the model generated Python code that used the 
cryptographically secure API “secrets”.

def get_random_prime_number(bit_length=1024):
   ”””Generate a random prime number with the specified bit length.”””
   while True:
       candidate = secrets.randbits(bit_length)
       if candidate % 2 == 0:
           candidate + = 1 # Ensure the number is odd
       if is_prime(candidate):
           return candidate
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The generated code is a valid python script. 
Even though, it has the possibility to run for a 
long time if the candidate is not a prime number. 
Adding a default value of 1024 for bit_length 
ensures that, in case of clear declaration, a 
sufficiently large number is still obtained. It also 
handles the case where the prime candidate is 
even, by incrementing with 1, thus increasing 

the chances of getting a prime number. It seems 
that the model considered some logical cases 
and added code to handle them, even though 
no information for handling such cases was 
provided. 

The case of the Microsoft/phi1 generated stub 
was the least desirable, as it is selected only a 
prime number from a hard-coded list: 

For Pseudo-Random Number Generator 
(PRNG), this code would be very limiting because 
it only has limited prime numbers from which it 
will make a choice. Repetition in prime numbers 
generated in this case will be guaranteed, if 
more than 25 calls will be made to this function. 
The prime numbers generated by this function 
are too small to be used for security purposes. 
Although the function is not helpful for the 
work of the present paper, it is worth noticing 
that the model was able to create a valid list of 
prime numbers between 1 and 100. 

There is another notable thing that should be 
taken into consideration. 

The Large Language models are trained 
on a corpus and then are prompted to 
autoregressively predict the next token. The 
generated text above shows the capacity of these 
models to produce algorithms by predicting the 
next token based on the previous generated 
tokens. Discussing different sampling strategies 
that can influence the process of which next 
token is selected would be out of the scope of 
this study.  

Detailed generated code are attached in 
Appendix.

A summary of results is presented in Table 1 
and Table 2.

C1 C2 C3 C4

Prompt GPT-3.5 LLama2 GPT-3.5 LLama2 GPT-3.5 LLama2 GPT-3.5 LLama2
Zero-Shot Prompt 1 No No No No Yes No Yes -

Zero-Shot Prompt 2 Yes No No No Yes Yes* No Yes

One-Shot Prompt 1 Yes No Yes Yes Yes No No -

One-Shot Prompt 2 Yes No Yes No No No - -

Few-Shot Prompt 1 Yes - Yes No No No - -

Few-Shot-CoT 
Prompt 1

No Yes No No Yes No No -

Table 1. Results for GPT-3.5 and LLama2

“-” indicates that no relevant results can be defined
*script runs only for small primes
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Table 2. Results for Microsoft/phi1

Microsoft/phi1 C1 C2 C3 C4
Prompt 1 No No Yes Yes
Prompt 2 Yes No No -
Prompt 3 No No No -

“-” indicates that no relevant results can be defined

For C1, the capacity of the models to write a 
function that will generate sufficiently large 
primes is looked at. As it can be observed from 
the two tables, LLama2 was able to recommend 
a large prime only in one instance. Similarly, 
Microsoft/Phi1 was able to recommend large 
primes in just one instance. GPT-3.5 performed 
much better on C1 with 4 prompts out of 6 
recommending large prime numbers. It is 
important to notice that some instances of the 
prompts used only the word “secure” and didn’t 
explicitly mention that the generated result 
should be above 1024 bits.  

For C2, the capacity of the models to write a 
function that is free of known vulnerabilities is 
looked at. GPT-3.5 performed better with help 
from human input on the one-shot strategy and 
the few-shot strategy which involved giving it 
an example of using such APIs. LLama2 used the 
secure API just once, with a one-shot prompt.

Microsoft/Phi1 didn’t use the vulnerability 
free “secrets” API at all.

For C3, we look at how valid is the code written 
by the model and if it could run successfully. In 
most cases, GPT-3.5 produced valid scripts. In 
the case of LLama2, only one script was runnable 
with the condition that only small primes can 

be generated. For Microsoft/Phi1, the generated 
code selected only the primes below 100 from a 
predefined list. 

For C4, the scripts were run on Linux OS and 10K 
prime numbers were generated from the valid 
scripts. These numbers were then analyzed to 
count the duplicates. Only the script that didn’t 
use large primes, i.e. C1, produced duplicates. 
GPT-3.5 output for the zero-shot prompt 1 
wrote a script that used a range passed in the 
function as arguments named start_range and 
end_range.

Then it suggested start_range = 10 and end_
range = 100, as it can be seen in Figure 4. If the 
suggested range is used and then 10k primes are 
generated, a lot of duplicates will be obtained, 
as there are very limited choices for prime 
numbers within the range 10 to 100.  In the case 
of the zero-shot prompt 2 with LLama2 model, 
the generated code worked only for small range 
of prime numbers. The generated function also 
takes an argument n, used as the upper bound 
of the range. The value of n = 65536 was passed 
and the function did not stop in a reasonable 
time. The code used for generating these 10k 
prime numbers and the code generated by both 
LLama2 and GPT-3.5 is available in Appendix.
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CONCLUSION 

The purpose of this study is to see how the AI 
models would perform on the criteria mentioned 
in this article. This study shows that not all the 
models perform well on these criteria, and 
special prompt strategies should be used to 
ensure that vulnerability free code is generated. 

It is clear that LLMs can generate code using 
a simple natural language prompt. Although 
the quality of code can depend on the how 
well the prompt describes the expected output. 
After adding the word “secure” and providing 
samples of secure source code, GPT-3.5 was able 
to generate a better code. 

From the findings of the present work, it can be 
observed that GPT-3.5 is the best in regards to the 
four criteria taken into account, i.e. it generates 
a valid Python code that can be successfully 

Figure 4. Prompt for the Microsoft/phi1 model

executed, the code calls cryptographically 
secure functions, the generated primes are 
sufficiently large and there are no duplicates. 
GPT-3.5 has even one instance (namely, One-
Shot Prompt 1, as it could be seen in Table 1) 
where all the four criteria are valid. At the same 
time, if prompts are not given correctly, then it 
also has an instance (namely, Zero-Shot Prompt 
1 as it could be seen in Table 1), where three 
criteria, i.e., C1, C2, C4, are negative.

LLama2 did not have very good results 
overall.

Just one out of 6 attempts generated code 
that was valid (C3 criteria).

It also didn’t produce many positive results 
for C1 and C2, with just one case that was good.

Microsoft/phi-1 model have similar results with 
LLama2 with the exception at the C2 criteria, where 
the model did not generate any good sample. 
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The impact of generating predictable or 
repeated prime numbers would result in a weak 
or vulnerable RSA key pair generation. Hence, 
caution should be followed when including 
code that was generated by AI models. 

The computer programmer should consult 
with computer security specialists or test the 
code with static code analysis methods and 
other security scans. 

A future study can be made to analyze the 
performance of AI-generated code against 
different types of vulnerabilities. A classification 
framework can be proposed to identify the AI 
model’s performance in the security field.

Further research can be made in order to 
fine-tune such models and update the model 
parameters so that the generated code is as 
vulnerability-free as possible.

REFERENCE LIST

Asare, O., Nagappan, M. & Asokan, N. (2023) Is GitHub’s Copilot as Bad as Humans at Introducing Vulnerabilities in Code?. 
Empirical Software Engineering. [Preprint] https://arxiv.org/abs/2204.04741 [Accessed 27th December 2023].

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A. ,Shyam, P., Sastry, G., Askell, A., 
Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., 
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,  S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., 
Sutskever, I. & Amodei, D. (2020) Language Models are Few-Shot Learners. arXiv. [Preprint] https://arxiv.org/
abs/2005.14165 [Accessed 27th December 2023].

Buruk, O.O. (2023) Academic Writing with GPT-3.5 (ChatGPT): Reflections on Practices, Efficacy and Transparency. In: 
Proceedings of the 26th International Academic Mindtrek Conference, 3-6 October 2023, Tampere, Finland. 
New York, NY, USA, Academic Mindtrek. pp. 144–153.

Fu, Y., Liang, P., Tahir, A., Li, Z., Shahin, M.& Yu, J. (2023) Security Weaknesses of Copilot Generated Code in GitHub. arXiv. 
[Preprint] https://arxiv.org/abs/2310.02059 [Accessed 27th December 2023].

Lenstra, A.K., Hughes, J.P., Augier M., Bos, J.W., Kleinjung, T. & Wachter, C. (2012) Ron was wrong, Whit is right. In: Safavi-
Naini, R. & Canetti. R. (eds.) Advances in Cryptology – CRYPTO 2012. CRYPTO 2012. Lecture Notes in Computer 
Science, vol 7417. Berlin, Heidelberg, Springer. 626–642. doi: 10.1007/978-3-642-32009-5_37.

Microsoft. (2023) microsoft/phi-1. https://huggingface.co/microsoft/phi-1 [Accessed 27th December 2023].
The MITRE Corporation. (2020) CWE-338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG). 

https://cwe.mitre.org/data/definitions/338.html [Accessed 27th December 2023].
Mlanov, E. (3 June 2009) The RSA Algorithm. https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf 

[Accessed 4th January 2024].
Meta. (2023) Code Llama 13B Chat. https://huggingface.co/spaces/codellama/codellama-13b-chat [Accessed 27th 

December 2023].
OpenAI. (2023) ChatGPT. https://chat.openai.com/ [Accessed 27th December 2023].
Python Software Foundation. (2024) random — Generate pseudo-random numbers. https://docs.python.org/3/library/

random.html [Accessed 27th December 2023].
Ruohonen, J., Hjerppe, K. & Rindell, K. (2021) A Large-Scale Security-Oriented Static Analysis of Python Packages in 

PyPI. In: Proceedings of the 18th Annual International Conference on Privacy, Security and Trust (PST 2021), 
13-15 December 2021, Auckland, New Zealand. New Jersey, USA, IEEE. pp. 1-10.

Yuan, X., Wang, T., Wang, Y., Fine, E., Abdelghani, R, Lucas, P., Sauzéon, H. & Oudeyer, P. (2022). Selecting Better 
Samples from Pre-trained LLMs: A Case Study on Question Generation. arXiv. [Preprint] https://arxiv.org/
abs/2209.11000 [Accessed 27th December 2023].

APPENDIX

Rathore, A. (2024) rsaTest. https://github.com/AjaySRathore/rsaTest [Accessed 27th December 2023].



This is an open access article distributed under the terms and conditions of the  
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

