
39Spring 2024, No. 1, Vol. 6/ Romanian Cyber Security Journal

Shared Prime Vulnerability
Analysis for Pseudo-

Random Number Generator
Implementation Proposed by AI

Models
Ajay Singh RATHORE, Samuel TĂNASE

University of Science and Technologies Politehnica of Bucharest
ajay.rathore.sr@gmail.com, tanase.samuel.00@gmail.com

Abstract: Large Language Models have become popular for performing different tasks like
summarization, translations, classification and code generation. This has led to different
types of research where models are observed and their architecture is improved for better
performance, including the tasks mentioned above. Other studies branch into finding a better
way to generate responses through these LLMs while treating them as a black box. There are
studies where the models are specially analyzed for the code generation task. We follow this
category of studies to analyze the generated code for security weaknesses like CWEs. A few
different publicly available models were used and prompted to provide the implementation of
pseudo-random number generation for prime numbers. The purpose of this study is to find out
if these generated prime numbers will be secure enough to be used for cryptography algorithms
such as RSA.
Keywords: Large Language Models, Code Generation, Security Weaknesses, CWEs, RSA.

INTRODUCTION

Ron Rivest, Adi Shamir, and Leonard Adleman
developed the popular algorithm: RSA. RSA
stands for the initials of the authors. This
algorithm is widely used for cryptographic tasks.
Such an algorithm relies on the generation of

two prime numbers: p and q. These numbers are
used to compute the public and private key pairs
of the key (Mlanov, 2009). A public key contains
the product of its prime numbers, called the
public modulus (n = p * q). The public modulus
is in line with the idea that factoring the public
key will be a computationally intensive task.

https://doi.org/10.54851/v6i1y202404

40 Romanian Cyber Security Journal / Vol. 6, No. 1, Spring 2024

ROCYS 2024 / Spring Edition

During the practical implementation of this
algorithm, it is very important that previously
generated random numbers are not repeated,
otherwise, it can cause two issues:

First, for two given keys k1, k2 which are
generated using p1, q1, p2, q2 respectively, then if

 p1 = q1 and p2 = q2 ⇒k1 = k2.

As k1 and k2 are the same key, in that case, if
k1 is produced by the attacker, then a private
key related to k1 will allow decryption of all the
messages encrypted by k2.

This idea has been explored on a large scale
in “Ron was wrong, Whit is right” (Lenstra et al.,
2012). They found that, due to the repetition of
previous random choices, 0.27 million keys were
vulnerable, as they had the same moduli. This
number represented 4% of the total collected
RSA keys.

Second, for two given keys k1 and k2, which
are generated using p1, q1, p1, q2 respectively,
then both q1 and q2 can be obtained using the
greatest common divisor:

GCD(k1, k2) = p1

q1 = k1/p1

q2 = k2/p2

This implies that for both keys k1 and k2,
private keys can now be derived. Hence, in this
scenario, where two public keys contain one
common prime, both keys can be compromised.

Through this study, the code generated
when a large LLM is prompted to write an
implementation for generating random prime
numbers is analyzed. The three used models
are GPT-3.5 (OpenAI, 2023), LLama2 (Meta, 2023),
Microsoft/phi1(Microsoft, 2023). The paper is
organised as follows. The following section
briefly discusses the related work, and the
next one presents the setup of the present
experiment. The next section illustrates the
results obtained, and the final one provides
the conclusion of the present work and some

prospects for the development of the proposed
research. Appendix is added with the code
generated by the models.

RELATED WORK

Similar studies are conducted on the quality of
responses generated by AI. Such studies include
analyzing capacity to write academic writing
(Buruk, 2023), security weaknesses in Copilot
generated code (Fu et al., 2023), or analyzing if
the model is as bad as humans at introducing
vulnerabilities (Asare et al., 2023). They show
various findings, such as that 33.3% of the
analyzed cases (Owura et al., 2023) produced
vulnerable code, while Fu et al. (2023) show that
up to 39.4% of snippets produced vulnerable
code in Python and 46.1% in C++.

A common theme in these studies is that they
treat the model as a black box, i.e., studies don’t
try to train the model or change the parameters
of the model. They focus on analyzing the model
as if it were a service that could be prompted. A
similar idea is used in this study as well, but the
focus is more specifically on generating random
prime numbers.

AI popularity has also triggered studies
where this black box theme is used to analyze
the performance of prompting. Studies show
that following a set of mechanisms (Yuan et
al., 2022) can generate different results and
that models can be guided to provide better
results. Similarly, Brown et al. (2020) present the
increase in model accuracy, as zero-shot, one-
shot and few-shot strategies are used.

EXPERIMENT SETUP

Different prompting strategies are taken into
consideration when generating different code
snippets. The same strategy was used for the
models GPT-3.5 (OpenAi, 2023) and LLama2
(Meta, 2023), while, for Microsoft/phi1, a
different strategy was used. The first two model
prompts were categorized as such:

• Zero-shot: prompt was provided as a single
sentence.

41Spring 2024, No. 1, Vol. 6/ Romanian Cyber Security Journal

• One-shot: prompt included a single
sentence and an example of the code
snippet to guide a secure random prime
generation.

• Few-shot: prompt was provided in
multistep, i.e., a simple sentence was
followed by a response, and then the

response was added back, in order to
generate the final code snippet.

• Few-shot-CoT (Chain of Thought): prompt was
provided as a chain of thought to explain why
certain examples were better than others.

Some examples of these prompts are provided
in Figure 1.

Figure 1. (A) Zero-shot prompt; (B) Zero-shot prompt with the word secure in it; (C) One-shot prompt with
one example

The Microsoft/phi1 model was loaded on a
machine as no public interface was provided.
The model was downloaded from Hugging
Face and loaded using the torch library. Then
prompts were created following the example

provided on the model main page (Microsoft,
2023).

Figure 2 shows a prompt from Microsoft/phi1.
Similarly, two other prompts were used [see
Appendix].

Figure 2. Prompt for the Microsoft/phi1 model

ROCYS 2024 / rocys.ici.ro

42 Romanian Cyber Security Journal / Vol. 6, No. 1, Spring 2024

ROCYS 2024 / Spring Edition

Once the prompt output was collected, it was
analyzed by humans to identify the following
characteristics:
C1: Are large primes generated? i.e., the number

is greater than or equal to 1024.
C2: Does code contain cryptographically secure

methods? i.e., any CWE is present.
C3: Can the generated scripts run? If the code

is valid, then a few code fixes are made in
order to make the code run. If many changes
are needed, it means that the code is not
valid. If the code can run in a reasonable
time, then it is valid.

C4: Run the valid scripts to generate 10K prime
numbers and detect if the prime numbers
are repeated.

RESULTS

The experiment showed clearly that in several
instances, the functions generated by the AI
models use Python’s default random API. This API
is not cryptographically secure (Python Software
Foundation, 2024). Figure 3 shows the warning in
the documentation provided for Cpython. This
API is also marked (Ruohonen et al., 2021) to be
associated with CWE-338 (MITRE, 2020).

Figure 3. The warning presented by the Cpython documentation of version 3.12.1.

Some results showed that the scripts generated were not suitable to be run, such as:

import random

def get_random_prime_number(n):
 prime_numbers = []
 for i in range(n):
 prime_number.append(random.randint(1,100...

The dots after 100…, indicate a lengthy
continuation of zeros. This is the case where it
seems that model is just repeating itself after
providing some tokens. In this instance, the
result is not very useful and it would require the

developers to write a more extended code to
make the program functional.

There were also successful instances where
the model generated Python code that used the
cryptographically secure API “secrets”.

def get_random_prime_number(bit_length=1024):
 ”””Generate a random prime number with the specified bit length.”””
 while True:
 candidate = secrets.randbits(bit_length)
 if candidate % 2 == 0:
 candidate + = 1 # Ensure the number is odd
 if is_prime(candidate):
 return candidate

43Spring 2024, No. 1, Vol. 6/ Romanian Cyber Security Journal

The generated code is a valid python script.
Even though, it has the possibility to run for a
long time if the candidate is not a prime number.
Adding a default value of 1024 for bit_length
ensures that, in case of clear declaration, a
sufficiently large number is still obtained. It also
handles the case where the prime candidate is
even, by incrementing with 1, thus increasing

the chances of getting a prime number. It seems
that the model considered some logical cases
and added code to handle them, even though
no information for handling such cases was
provided.

The case of the Microsoft/phi1 generated stub
was the least desirable, as it is selected only a
prime number from a hard-coded list:

For Pseudo-Random Number Generator
(PRNG), this code would be very limiting because
it only has limited prime numbers from which it
will make a choice. Repetition in prime numbers
generated in this case will be guaranteed, if
more than 25 calls will be made to this function.
The prime numbers generated by this function
are too small to be used for security purposes.
Although the function is not helpful for the
work of the present paper, it is worth noticing
that the model was able to create a valid list of
prime numbers between 1 and 100.

There is another notable thing that should be
taken into consideration.

The Large Language models are trained
on a corpus and then are prompted to
autoregressively predict the next token. The
generated text above shows the capacity of these
models to produce algorithms by predicting the
next token based on the previous generated
tokens. Discussing different sampling strategies
that can influence the process of which next
token is selected would be out of the scope of
this study.

Detailed generated code are attached in
Appendix.

A summary of results is presented in Table 1
and Table 2.

C1 C2 C3 C4

Prompt GPT-3.5 LLama2 GPT-3.5 LLama2 GPT-3.5 LLama2 GPT-3.5 LLama2
Zero-Shot Prompt 1 No No No No Yes No Yes -

Zero-Shot Prompt 2 Yes No No No Yes Yes* No Yes

One-Shot Prompt 1 Yes No Yes Yes Yes No No -

One-Shot Prompt 2 Yes No Yes No No No - -

Few-Shot Prompt 1 Yes - Yes No No No - -

Few-Shot-CoT
Prompt 1

No Yes No No Yes No No -

Table 1. Results for GPT-3.5 and LLama2

“-” indicates that no relevant results can be defined
*script runs only for small primes

ROCYS 2024 / rocys.ici.ro

44 Romanian Cyber Security Journal / Vol. 6, No. 1, Spring 2024

ROCYS 2024 / Spring Edition

Table 2. Results for Microsoft/phi1

Microsoft/phi1 C1 C2 C3 C4
Prompt 1 No No Yes Yes
Prompt 2 Yes No No -
Prompt 3 No No No -

“-” indicates that no relevant results can be defined

For C1, the capacity of the models to write a
function that will generate sufficiently large
primes is looked at. As it can be observed from
the two tables, LLama2 was able to recommend
a large prime only in one instance. Similarly,
Microsoft/Phi1 was able to recommend large
primes in just one instance. GPT-3.5 performed
much better on C1 with 4 prompts out of 6
recommending large prime numbers. It is
important to notice that some instances of the
prompts used only the word “secure” and didn’t
explicitly mention that the generated result
should be above 1024 bits.

For C2, the capacity of the models to write a
function that is free of known vulnerabilities is
looked at. GPT-3.5 performed better with help
from human input on the one-shot strategy and
the few-shot strategy which involved giving it
an example of using such APIs. LLama2 used the
secure API just once, with a one-shot prompt.

Microsoft/Phi1 didn’t use the vulnerability
free “secrets” API at all.

For C3, we look at how valid is the code written
by the model and if it could run successfully. In
most cases, GPT-3.5 produced valid scripts. In
the case of LLama2, only one script was runnable
with the condition that only small primes can

be generated. For Microsoft/Phi1, the generated
code selected only the primes below 100 from a
predefined list.

For C4, the scripts were run on Linux OS and 10K
prime numbers were generated from the valid
scripts. These numbers were then analyzed to
count the duplicates. Only the script that didn’t
use large primes, i.e. C1, produced duplicates.
GPT-3.5 output for the zero-shot prompt 1
wrote a script that used a range passed in the
function as arguments named start_range and
end_range.

Then it suggested start_range = 10 and end_
range = 100, as it can be seen in Figure 4. If the
suggested range is used and then 10k primes are
generated, a lot of duplicates will be obtained,
as there are very limited choices for prime
numbers within the range 10 to 100. In the case
of the zero-shot prompt 2 with LLama2 model,
the generated code worked only for small range
of prime numbers. The generated function also
takes an argument n, used as the upper bound
of the range. The value of n = 65536 was passed
and the function did not stop in a reasonable
time. The code used for generating these 10k
prime numbers and the code generated by both
LLama2 and GPT-3.5 is available in Appendix.

45Spring 2024, No. 1, Vol. 6/ Romanian Cyber Security Journal

CONCLUSION

The purpose of this study is to see how the AI
models would perform on the criteria mentioned
in this article. This study shows that not all the
models perform well on these criteria, and
special prompt strategies should be used to
ensure that vulnerability free code is generated.

It is clear that LLMs can generate code using
a simple natural language prompt. Although
the quality of code can depend on the how
well the prompt describes the expected output.
After adding the word “secure” and providing
samples of secure source code, GPT-3.5 was able
to generate a better code.

From the findings of the present work, it can be
observed that GPT-3.5 is the best in regards to the
four criteria taken into account, i.e. it generates
a valid Python code that can be successfully

Figure 4. Prompt for the Microsoft/phi1 model

executed, the code calls cryptographically
secure functions, the generated primes are
sufficiently large and there are no duplicates.
GPT-3.5 has even one instance (namely, One-
Shot Prompt 1, as it could be seen in Table 1)
where all the four criteria are valid. At the same
time, if prompts are not given correctly, then it
also has an instance (namely, Zero-Shot Prompt
1 as it could be seen in Table 1), where three
criteria, i.e., C1, C2, C4, are negative.

LLama2 did not have very good results
overall.

Just one out of 6 attempts generated code
that was valid (C3 criteria).

It also didn’t produce many positive results
for C1 and C2, with just one case that was good.

Microsoft/phi-1 model have similar results with
LLama2 with the exception at the C2 criteria, where
the model did not generate any good sample.

ROCYS 2024 / rocys.ici.ro

46 Romanian Cyber Security Journal / Vol. 6, No. 1, Spring 2024

ROCYS 2024 / Spring Edition

The impact of generating predictable or
repeated prime numbers would result in a weak
or vulnerable RSA key pair generation. Hence,
caution should be followed when including
code that was generated by AI models.

The computer programmer should consult
with computer security specialists or test the
code with static code analysis methods and
other security scans.

A future study can be made to analyze the
performance of AI-generated code against
different types of vulnerabilities. A classification
framework can be proposed to identify the AI
model’s performance in the security field.

Further research can be made in order to
fine-tune such models and update the model
parameters so that the generated code is as
vulnerability-free as possible.

REFERENCE LIST

Asare, O., Nagappan, M. & Asokan, N. (2023) Is GitHub’s Copilot as Bad as Humans at Introducing Vulnerabilities in Code?.
Empirical Software Engineering. [Preprint] https://arxiv.org/abs/2204.04741 [Accessed 27th December 2023].

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A. ,Shyam, P., Sastry, G., Askell, A.,
Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I. & Amodei, D. (2020) Language Models are Few-Shot Learners. arXiv. [Preprint] https://arxiv.org/
abs/2005.14165 [Accessed 27th December 2023].

Buruk, O.O. (2023) Academic Writing with GPT-3.5 (ChatGPT): Reflections on Practices, Efficacy and Transparency. In:
Proceedings of the 26th International Academic Mindtrek Conference, 3-6 October 2023, Tampere, Finland.
New York, NY, USA, Academic Mindtrek. pp. 144–153.

Fu, Y., Liang, P., Tahir, A., Li, Z., Shahin, M.& Yu, J. (2023) Security Weaknesses of Copilot Generated Code in GitHub. arXiv.
[Preprint] https://arxiv.org/abs/2310.02059 [Accessed 27th December 2023].

Lenstra, A.K., Hughes, J.P., Augier M., Bos, J.W., Kleinjung, T. & Wachter, C. (2012) Ron was wrong, Whit is right. In: Safavi-
Naini, R. & Canetti. R. (eds.) Advances in Cryptology – CRYPTO 2012. CRYPTO 2012. Lecture Notes in Computer
Science, vol 7417. Berlin, Heidelberg, Springer. 626–642. doi: 10.1007/978-3-642-32009-5_37.

Microsoft. (2023) microsoft/phi-1. https://huggingface.co/microsoft/phi-1 [Accessed 27th December 2023].
The MITRE Corporation. (2020) CWE-338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG).

https://cwe.mitre.org/data/definitions/338.html [Accessed 27th December 2023].
Mlanov, E. (3 June 2009) The RSA Algorithm. https://sites.math.washington.edu/~morrow/336_09/papers/Yevgeny.pdf

[Accessed 4th January 2024].
Meta. (2023) Code Llama 13B Chat. https://huggingface.co/spaces/codellama/codellama-13b-chat [Accessed 27th

December 2023].
OpenAI. (2023) ChatGPT. https://chat.openai.com/ [Accessed 27th December 2023].
Python Software Foundation. (2024) random — Generate pseudo-random numbers. https://docs.python.org/3/library/

random.html [Accessed 27th December 2023].
Ruohonen, J., Hjerppe, K. & Rindell, K. (2021) A Large-Scale Security-Oriented Static Analysis of Python Packages in

PyPI. In: Proceedings of the 18th Annual International Conference on Privacy, Security and Trust (PST 2021),
13-15 December 2021, Auckland, New Zealand. New Jersey, USA, IEEE. pp. 1-10.

Yuan, X., Wang, T., Wang, Y., Fine, E., Abdelghani, R, Lucas, P., Sauzéon, H. & Oudeyer, P. (2022). Selecting Better
Samples from Pre-trained LLMs: A Case Study on Question Generation. arXiv. [Preprint] https://arxiv.org/
abs/2209.11000 [Accessed 27th December 2023].

APPENDIX

Rathore, A. (2024) rsaTest. https://github.com/AjaySRathore/rsaTest [Accessed 27th December 2023].

This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

