
39Spring 2021, No. 1, Vol. 3 / Romanian Cyber Security Journal

ROCYS 2021 / rocys.ici.ro

Functional Elements Specific to
Mongodb Databases

Dragoş NICOLAU
National Institute for Research and Development in Informatics – ICI Bucharest

dragos.nicolau@ici.ro

Abstract: The present paper aims to present some considerations on the functional features
of MongoDB databases, belonging to the NoSQL typology (increasingly used especially by
Web applications such as Youtube, Amazon, Google and Facebook - forced both to store
an impressive volume of data and to provide, on the basis of these data, quick answers
to competing queries, with an increasing level of rhythmicity). The article’s contribution
consists in presenting the conceptual equivalences between the classical bases (SQL) and
the Mongo bases, as well as in explaining a range of commands used in the dialogue between
an application and the MongoDB Server. Additionally, a brief , concrete case study on using
MongoDB in a cybersecurity successful solution is here-in integrated.
Keywords: MongoDB, NoSQL Databases, Relational Databases.

INTRODUCTION
Organizations (companies, institutions,

agencies, etc.) electronically collect
considerable amounts of data for various
purposes: product marketing, providing
press information in text or multimedia
format, providing software [6], presentation
of financial, legal or administrative content,
the provision of software platforms for
telemedicine [4] or the realization of forecasts
and analyzes for work strategies, etc. Usually,
this data is stored in relational databases. We
specify that the relational (classical) basis
is a fixed collection of tables; the table is a
fixed collection of fields, next to each field
remembering a list – in theory, no matter

how long - of data of exactly the same type;
connections can be established between
the tables, either in the form of additional
fields - which in a data table store unique
identifiers from another data table - or in
the form of link tables; the field represents
an informational category, ie a segment
(identifiable by name) of information of a
certain type, well determined. Lately, however,
many developers have begun to implement
and propose non-relational databases
called NoSQL („Not Only SQL”). With the
development and spread of Web applications
(distinguished by a pronounced interactive
character), there has been a need to store
an amount of information with an increasing

40 Romanian Cyber Security Journal / Vol. 3, No.1, Spring 2021

ROCYS 2021 / Spring Edition

volume: users are no longer satisfied with
the role of querying databases, but they also
want to produce content (by sending texts or
files of any kind).

The Web universe has forced a rethinking
of the way data is stored and processed, so
we started looking for specific solutions to
build software mechanisms that provide
increased speed in analyzing a growing
number of records [3]. Databases serving Web
applications do not face complex queries
(they are generally derived from a multitude
of inner associations - equivalent to the
intersection of data collections and outer -
equivalent to the reunion of data collections),
but rather simple yet demanding queries
in terms of volume and rhythm. NoSQL
databases successfully meet the above-
mentioned volume and speed requirements.

Faced with the increase in traffic and storage
volume, relational databases are no longer
efficient in terms of speed, especially for
applications that manage colossal volumes
of data. Among the first applications (with
impressive data turnover) that raised the issue
of adaptability to high effort are Facebook,
Google and Youtube. According to estimated
studies, the volume of data stored in electronic
format is growing rapidly from year to year,
in 2018 reaching the level of almost 15 000.
exabytes [2] (1 EB = 1018 bytes = 1 billion bytes).

The purpose of the article is to present the
conceptual equivalences between classical
databases (SQL) and Mongo databases,
as well as to explain a range of commands
used in the dialogue between an application
and the MongoDB Server. In addition, a
concrete case study on using MongoDB in a
cybersecurity successful solution is included
as a brief overview.

GENERAL ASPECTS REGARDING
MONGODB DATABASES

MongoDB is a NoSQL database system. The
main advantage offered by the non-relational
bases is that they allow extremely effective
queries, due to the fact that the data (no

matter how complex its organization) is stored
in a format with „elastic” structure (without
scheme and without connection tables; we
specify that the scheme means - stricto sensu
- the organization of information in tables by
dividing it into fields with proper name and
fixed type of data). Currently, there are NoSQL
databases developed by many companies
(such as Amazon and Google) whose Web
applications process huge amounts of data [7].

The main functional features of MongoDB
databases are:

•	 Lack of scheme.
•	 Anatomical simplicity and elasticity,

which allows for the execution of quick queries.
•	 Ability to add / edit / delete dynamically

new attributes (fields) to existing records.
•	 Ability to share load on multiple servers

(i.e. distribution of computing „effort”).
•	 Ability to replicate data across

multiple servers.
•	 Simultaneous access is possibly

problematic with respect to the one
performed within the relational model (i.e. no
action on a MongoDB database benefits from
any guarantee of exclusivity, unlike actions
executed inside classical SQL transactions).

From the developers’ perspective, MongoDB’s
basics are open-source and enjoy generous
collections of API functions for dialogue with
applications written in various languages.
The MongoDB system enjoys very good
compatibility with Cloud technology, which is
based on virtualization.

The main arguments for the development
and use of MongoDB databases are:

•	 Avoiding morphological complexity
by storing data according to the model of
structures in programming languages, not
according to the relational model. Most
applications operate with massive data
structures but of relatively low complexity.

•	 Performing effectively but under
certain deployment rules (as stated 2
paragraphs bellow), at the expense of slight
suppression of reliability, as is the case with
social networking Web sites.

41Spring 2021, No. 1, Vol. 3 / Romanian Cyber Security Journal

ROCYS 2021 / rocys.ici.ro

•	 Programming applications that interact
with databases is comfortable.

Responding in due time under the
circumstance of massive data traffic stress
is possible when conforming to certain
deployment rules, one of each being
sharding and scaling out, which incurres
additional costs. Actually, there are studies
that show SQL server configurations, such
as Postgresql and Cassandra, outperforming
MongoDB in both read and write at the
same cost. MongoDB simply requires more
servers. So, performance per-se may be
an argument for adoption only under
the requirement of extra investment in
supplementary physical instances.

ABOUT STRUCTURING INFORMATION
IN MONGODB DATABASES

Relational databases (classic SQL)
mirrored with MongoDB Bases

Principally, MongoDB databases represent
a new way of depositing information, with
neither schema nor connection tables, the
records being JavaScript tree structures.

Storing a huge amount of data (another
important feature of NoSQL databases) rests on
the „horizontal” distribution of computational
effort. „Horizontal” distribution means running
several identical instances on different servers
simultaneously. It is useful in situations
requiring very high traffic and meeting a
significant number of simultaneous requests.
Among other notable NoSQL systems used
today, Hbase, CouchDB, GTM [9] must be cited.
Data storage can be easily organized in complex
(tree) models, which emphasizes the increased
flexibility offered by the NoSQL typology.

The principle of data storage: classic SQL
vs. MongoDB

Each database in MongoDB comprises a set of
collections (a collection is the equivalent of a
table in SQL databases. Each collection stores
documents, which are the equivalent of records
in tables. Whereas a line (record) organizes data
storage in a row of columns, a document stores
data in a JSON (JavaScript Object Notation)
structure. The following is an document sample
(classic SQL line equivalent) consisting of some
fields (column equivalents) that store user data:

This above mentioned document is the
equivalent of a single line in classic SQL (i.e.
it is the equivalent of a record). A collection
contains several such documents, as a classic
table contains several records broken down
by columns; in each document of a collection
there is a unique identification field, a 24-

byte field that serves as the primary key
for every document. The _id identifier is
generated and inserted automatically (by the
management system) if it is not present in the
structure ready to be inserted („id”: ObjectId
(„5146bb52d8524270060001f3”)). Otherwise,
it is kept as such (a strongly discouraged

42 Romanian Cyber Security Journal / Vol. 3, No.1, Spring 2021

ROCYS 2021 / Spring Edition

option), obviously if it is not a duplicate.
This field is automatically generated (by the
MongoDB server) when creating the document
(i.e. when inserting) and it is used to identify
uniquely each document. The equivalences
will be exemplified by a classic SQL table
: MongoDB collection pair. As shown in the

figure below, each row in the SQL table turns
into a document (blue frame) and each column
into a field. (fig.1)

In short, the counterpart of a table is a
collection (it contai ns the list of documents),
and the counterpart of a line (record) is a
document.

Fig. 1:Classic SQL table vs MongoDB structure (a collection of documents; each document contains fields)

An example of a dynamic scheme typical
of the MongoDB typology

A remarkable feature of MongoDB basics is
that that different documents in a collection
may have different “schemas”. As such, in
MongoDB it is possible for a document to have 5
fields and another “sibling” document to have 7
fields, within the same collection (table). These
fields can be easily added, modified or removed
at any time. Moreover, there are no constraints
on the data types of the fields, therefore in one

instance a field can have data of int type and
in the next instance to contain an array. These
characteristics are fundamentally different from
those of classical SQL where tables, columns,
data types and relationships are predefined,
rigid. Obviously, this new functionality (the
dynamic “scheme”) permits generating any
variety of document at run-time.

Fig. 2 presents two documents (records)
from the same collection (table), with
different “schemas”:

Fig. 2:Two MongoDB documents with different “schemas” (anatomies)

43Spring 2021, No. 1, Vol. 3 / Romanian Cyber Security Journal

ROCYS 2021 / rocys.ici.ro

The ID values were chosen as illustrative
for the idea of generating documents,
the correct value being a unique string
consisting of 24 hexadecimal digits (i.e. 0:
F) randomly generated. The first document
contains the fields „address (adresa)” and
„education(studii)” that are not present in
the second document, while the second
document contains the fields „sex” and
„profession(profesie)” that do not exist in
the first document. If one were to use the
classic SQL design, he (she) would have had
4 extra columns for all these fields, filled
with empty values (or NULL) accordingly, thus
taking up unnecessary space. This dynamic
schema model is the reason for which NoSQL
databases are very „flexible” in design. Various
complex schemas (hierarchical, with tree
structures etc.) that would require a number
of SQL tables, can be efficiently designed
using the anatomic versatility of a document.
A typical example would be storing user posts
(coupled with their specific assessment and
comments) or other information that requires
tree structuring. A classic SQL implementation
for the same information context would
require separate tables for storing this data

assembly, whereas the MongoDB version can
store all this information in a single document.

An example of making connections:
classic SQL vs. MongoDB

A remarkable feature of MongoDB basics is
that that different documents in a collection
may have different “schemas”.

Connections (relations) in classical SQL are
made using primary and foreign keys, therefore
queries use either links (join) or value matching
tests for „link” fields. (It should be noted that
in MongoDB all these complications disappear,
because documents can be encapsulated and
correlated.) For example, if it is necessary to
store user information and contact information
for those users, the classic SQL solution would
require 2 tables - that is, {Users} and {Phones},
with primary keys (Primary Key = PK) called id,
as seen in the figure below (fig. 3). The {Phones}
table would mandatorily contain a contact_id
column that represents the foreign key (foreign
key=FK) respectively coinciding in value with
the id field (column) in the {Users} table. The
id and contact_id columns materialize the
connection (in this example, the connection is
of type 1: 1) between pieces of information.

Fig. 3:Two SQL (classic) tables connected by “Primary Key to Foreign Key”

44 Romanian Cyber Security Journal / Vol. 3, No.1, Spring 2021

ROCYS 2021 / Spring Edition

By contrast, MongoDB achieves the
connection by inserting a reference, as in the
example below. This manner of connecting is
the most widespread, but by no means unique.

The MongoDB approach illustrated bellow
will use two collections, { Users } and
{Phones}, both with their own unique _id
fields. In the {Phones} document there is
a contact_id field connected with _id from
the { Users } document; the contact field
illustrates to which user the current phone
list corresponds (fig. 4). In MongoDB, the
corresponding relationships and operations
must be performed manually (i.e. in the

code development phase), as neither
constraints nor rules of external keys do
apply here. Correctly establishing the
value match between the contact_id field
in the document containing the phones
and the _id field of the associated user -
is the responsibility of the developer. For
example, if a value entered for contact_id
(in the {Phones} document) is not retrieved
in the {Users} collection, MongoDB will never
return any error informing that a connection
was made to something that does not exist
(unlike classic SQL, which would issue an
“ invalid foreign key” constraint error).

Fig. 4:Two MongoDB collections, connected by inserting a reference, without keys (neither primary nor external)

Another way to create MongoDB
connections between categories of
information is encapsulating entire
documents: within the {Users} type document
there is a peculiar field that contains all
contact data; therefore, a whole complete
information is injected on the spot [8]. In a
similar manner, large, complex documents, as
well as hierarchical data can be embedded
to make connections between entities. The
“injection” mode chosen to incarnate the
connection - i.e. either the connection done
by inserting a reference, or the connection

done by encapsulating an entire document
- depends on the specific scenario. If it is
estimated that the data to be embedded will
occupy large volumes of memory over time,
a connection accomplished by inserting a
reference is preferable.

The synthesized parallelism of the
concepts: classic SQL vs. MongoDB

Fig. 5, below, represents the synthesis of
what was previously presented regarding the
parallelism between the concepts encountered
in classical SQL and those used in MongoDB.

45Spring 2021, No. 1, Vol. 3 / Romanian Cyber Security Journal

ROCYS 2021 / rocys.ici.ro

Fig. 5:The synthesized parallelism of the concepts: classic SQL vs. MongoDB

CLASSIC SQL COMMANDS VS.
MONGODB COMMANDS

MongoDB is an open-source NoSQL
database management system (written in C
++) designed to work with unstructured (in
the meaning of classical database world)
data, organizing them in block-tree format.
MongoDB ensures advanced performance,
high availability and very good adaptation to
increased computing effort [1].

MongoDB is equipped by default with a
console client application, namely the bin
/ mongo.exe executable, representing the
interactive shell (client executable, Console
type, which analyzes and sends commands for
interpretation to the Windows Mongo Service
- embodied by bin / mongod. exe) also written
in C / C ++ and able to harvest the returned
results. The shell is useful for test checks
and administrative functions (literally, „Shell”
means „bunch of encapsulated commands”).
Each database is physically personified by
two files (MyBase.0 and MyBase.ns) located
in a dedicated folder, configurable after
installation by editing an initialization file.

It is worth noting that all of the MongoDB
syntaxes below (containing table names,
function names, field names, parameters, and
arguments) are NOT „per se” calls, but simple
JavaScript texts that are transmitted to the
MongoDB server, to be interpreted - just as

an established SQL command is also a simple
text carrying an SQL syntax, conveyed to the
relational database server, to be interpreted.
The MongoDB server is the Windows Mongo
Service - embodied by bin / mongod.exe.

Create
In MongoDB it is not necessary at all to

create a collection structure explicitly (as it
is when creating classic SQL tables using a
CREATE TABLE query). The individual anatomy
is created automatically for every document
when inserted in the collection. However, an
empty collection can be created using the
createCollection() command.

SQL:
CREATE TABLE `postari` (`id` int (11) NOT

NULL AUTO_INCREMENT,
`text` varchar (500) NOT NULL, `user` varchar

(20) NOT NULL, ̀ access` varchar (10) NOT NULL,
`assessment` int (11) NOT NULL, PRIMARY KEY
(` id`));

MongoDB:
db.createCollection(„postari”)

Insert
In MongoDB to insert a document we use

the insert() method which takes as input an
object with key value pairs.

The inserted document will contain the
self-generated field _id. A value of 24 bytes

46 Romanian Cyber Security Journal / Vol. 3, No.1, Spring 2021

ROCYS 2021 / Spring Edition

for _id can also be used explicitly, but this is a
soundly not-recommended practice.

SQL:
INSERT INTO `postari` (`id`, `text`, `user`,

`access`,
`assessment`) VALUES (NULL, ‚Something

posted ...’, ‚Ionescu’, ‚public’, ‚0’);
MongoDB:
db.postari.insert({user: „Ionescu”, text:

„Something posted ...”, access: „public”,
assessment: 0})

There is no Alter Table command to change
the anatomy of the document. As documents
are dynamic, their „scheme” (anatomy) can
be modified at any time, at execution.

Read
MongoDB uses the find() method which is

equivalent to the SELECT command in SQL.
The following MongoDB command effortlessly
reads all the documents in a given collection:

SQL: SELECT * FROM `postari`;
MongoDB: db.postari.find()
The next query performs a conditional

search for documents by the value „Ionescu”
encountered for the user field. All criteria for
finding documents must be placed in the first
{} and separated by commas.

SQL: SELECT * FROM `postari` WHERE `user`
= ‚Ionescu’;

MongoDB: db.postari.find ({user: „Ionescu”})
The following queries return certain

columns, text, and assessment as specified in
the second set of {}.

SQL: SELECT `text`, `assessment` FROM
`postari`;

MongoDB: db.postari.find ({}, {text: 1,
assessment: 1})

Note that by default MongoDB returns the
_id field with each search statement. If we do
not want to have this field in the result set, the
_id key with a value of 0 must be specified in
the list of columns to be returned. The value
0 of the key indicates that we want to exclude
this field from the resulting set.

MongoDB: db.postari.find ({}, {text: 1,
assessment: 1, _id: 0})

The following query returns certain fields
based on the value „Ionescu” encountered for
the user field:

SQL: SELECT `text`, `assessment` FROM
`postari` WHERE `user` = ‚Ionescu’

MongoDB: db.postari.find ({user: „Ionescu”},
{text: 1, assessment: 1})

Below is another criterion to return posts
having the type of access = public. The criteria
specified using commas represent the logical
AND / OR condition. Therefore, this statement
will search for documents that have user =
Ionescu and/or access = public:

SQL: SELECT `text`, `assessment` FROM
`postari` WHERE `user` = ‚Ionescu’ AND `access`
= ‚public’

MongoDB: db.postari.find ({user: „Ionescu”,
access: „public”}, {text: 1, assessment: 1})

SQL: SELECT `text`, `assessment` FROM
`postari` WHERE `user` = ‚Ionescu’ OR `access` =
‚public’

MongoDB: db.postari.find({$or: [{user:
„Ionescu”}, {access: „public”}]}, {text: 1,
assessment: 1})

The sort() method is used to sort the results in
ascending order by assessment (indicated by 1):

SQL: SELECT * FROM `postari` WHERE `user` =
‚Ionescu’ order by assessment ASC

MongoDB: db.postari.find({user: „Ionescu”}).
sort ({assessment: 1})

To sort the results in descending order, specify
the value -1 for the field:

SQL: SELECT * FROM `postari` WHERE `user` =
‚Ionescu’ order by assessment DESC

MongoDB: db.postari.find({user: „Ionescu”}).
sort ({assessment: -1})

To limit the number of documents to be
returned, use the limit() method, specifying the
number of documents:

SQL: SELECT * FROM `postari` LIMIT 10
MongoDB: db.postari.find().limit(10)
In the same way in which offset is used in SQL

to skip a certain number of results, in MongoDB
the skip() function is used. The query below
returns 10 posts skipping the top 5:

SQL: SELECT * FROM `mail` LIMIT 10 OFFSET 5
MongoDB: db.postari.find().limit(10).skip(5)

47Spring 2021, No. 1, Vol. 3 / Romanian Cyber Security Journal

ROCYS 2021 / rocys.ici.ro

Update
The first argument in the update() method

specifies the document selection criteria.
The second argument specifies the current
update operation to be performed. For
example, below are selected all documents
with username = Ionescu to whom is set
access = private:

SQL: UPDATE `postari` SET access =
„private” WHERE user = ‚Ionescu’

MongoDB:
db.postari.update({user: „Ionescu”}, {$set:

{access: „private”}}, {multi: true})
The difference from classic SQL is that

MongoDB executes update() only once, on
the first returned document. To update all
documents of interest, a third argument
must be set, specifying multi as true,
thus indicating the intention to update
supplementary documents.

Remove
SQL: DELETE FROM `postari` WHERE user =

‚Ionescu’
MongoDB: db.postari.remove ({user:

„Ionescu”})

Indexing
By default, MongoDB is designed to

„consider” the _id field as the default index
for each collection (table). To give other
fields the default index prerogative, the
ensureIndex() method is used, specifying
the fields and sort order by 1 or -1:

SQL: CREATE INDEX index ON `postari`
(user, DESC assessment)

MongoDB: db.postari.ensureIndex({user: 1,
ratings: -1})

MongoDB: db.postari.getIndexes() is the
command that provides (returns) the list of
indexes of a collection.

MONGODB AND CYBERSECURITY
From here onwards, a concrete case in

which MongoDB is considered an available
solution for serving applications involved
cybersecurity, is presented.

McAfee analyzes cyberthreats from all
angles, identifying threat relationships,
such as malware used in network intrusions,
websites hosting malware, botnet
associations, and more. Threat information
is extremely time sensitive: knowing about
a three week old threat is useless.

In order to provide up to date,
comprehensive threat information, McAfee
needs to process quickly terabytes of different
data types (such as IP address or domain)
into meaningful relationships: e.g. is a certain
web site trustworthy or not? or what other
sites have been interacting with it? etc. Also,
the success of a cloud-based system depends
on a bidirectional data flow: GTI (Gateway
Transaction Interface) gathers data from
millions of client sensors and provides real-
time intelligence back to these end products,
at a rate of 100 billion queries per month.

McAfee was unable to address these needs
and scale out effectively to millions of records
with their previously existing solutions. For
example, the HBase / Hadoop setup made it
difficult to run convoluted, complex queries,
and, on the other hand, experienced bugs
with the Java garbage collector running out
of memory. Another issue was with sharding
and syncing; Lucene was able to index in
interesting ways, but required too much
customization. McAfee compensated for
all the rebuilding and redeploying of Katta
shards with “the usual scripting duct tape,”
but what they really needed was a solution
that could seamlessly handle the sharding
and updating on its own.

As the company was spending more time
building solutions in-house rather than
focusing on threat research [10], an effective
database engine was needed in order to
permit the developers to concentrate on :
finding interesting bits in the data, figure
out who’s being harmful on the web at any
given moment, and report that up the chain
for whomever wants to use it.

McAfee selected MongoDB, which has
excellent documentation and a developer

48 Romanian Cyber Security Journal / Vol. 3, No.1, Spring 2021

ROCYS 2021 / Spring Edition

community that is increasing. MongoDB
enables McAfee to develop quickly on a
platform that can mount, delivering time to
market advantages. Writing proof of concept
applications has become comfortable to do in
MongoDB. Plus, the ability to change document
schema on the fly boosts productivity.

Auto-sharding makes it rather effortless
to add more servers at any time to the
effect of copping with Gateway Transaction
Interface increasing data needs, as a two-
fold increase in data over the last two year
period (2018-2020) was noticed, a trend that
is expected to continue. With the capacity
to store more data, McAfee gains more
visibility into threats and is able to perform
more interesting data analysis. GTI receives
queries of its data as JSON objects, which
it can pass with minimal transformation
into MongoDB. This greatly simplifies query
workflow, and MongoDB’s rather good speed
and indexing capability obviates the need
for a separate search engine solution such
as Lucene / Katta. MongoDB is sometimes
fast – queries on the user-facing McAfee.
com site, for example, are now completed
in ~150ms, down from 500ms.

CONCLUSIONS
This paper focuses on the presentation of

the main functional features of MongoDB
databases, belonging to the NoSQL typology.

The main feature of MongoDB databases
is that they allow data to be stored in an
unstructured way (NOT in the form of a classic
table-rigid scheme, but in a tree form - the
scheme being non-existent, which makes it
possible to host dynamically any conceivable
configuration, provided that the JSON syntax
is observed), which considerably increases
the efficiency of accessing them. Data can
be stored in any possible combination
(texts, integers, files, collections of entities,
etc. or any imaginable grouping of them).
The fundamentals of MongoDB are lack of
schema, anatomical simplicity - which allows

the execution of quick queries, the ability to
add / edit / delete dynamically new attributes
(fields) to existing records, the ability to share
the load on multiple servers (i.e. distribution „
computing effort), the ability to replicate data
on multiple servers and possible problems
with simultaneous access (no guarantee of
exclusivity for read/write operations, unlike
the assurance given by the transactions of the
classic relational model). In terms of software
development, the basics of MongoDB are
open-source and enjoy generous collections
of API functions for dialogue with applications
written in various languages. For concrete and
simple examples, the equivalence between
classic SQL syntax and NoSQL syntax of
JavaScript origin is also illustrated.

From another cyber-security perspective,
it should be emphasized that MongoDB
databases are exposed to the danger of
NoSQL injections, just as classical databases
are exposed to the homologous menace,
namely the well-established SQL injections.
We remind that an injection is the process
of sending (injecting) a command instead of
“honest”, innocuous pieces of information
(data) with the purpose of changing radically
the functioning of a command: the newly
resulted command is intended to cause
damages to the database or to obtain
unauthorized access to stored data. Although
the recent generations of MongoDB-server
shell is planned to reject NoSQL injections,
the responsibility for immunizing against
such attempts still rests with he (she) who
develops the application that communicates
with the MongoDB service (server).

The article’s contribution consists in
presenting the conceptual equivalences
between classical bases (SQL) and Mongo
bases, as well as in explaining an illustrative
range of commands used in the dialogue
between an application and the MongoDB
Server; also, a concrete case study on using
MongoDB in a cybersecurity successful
solution has been inserted as a brief overview.

49Spring 2021, No. 1, Vol. 3 / Romanian Cyber Security Journal

ROCYS 2021 / rocys.ici.ro

AKNOWLEDGEMENTS
This article is the result of the software developing activity that the author has performed within

the Project “RO-SmartAgeing; 2021 phases”.

REFERENCE LIST
*** - “C# Driver” - 2018; https://docs.mongodb.com/getting-started
*** - “Data storage supply and demand worldwide, from 2009 to 2020 (in exabytes)”; https://www.statista.com/

statistics/751749/worldwide-data-storage-capacity-and-demand – 2018
*** - “NoSQL Databases” - 2018; http://nosql-database.org/
Alexandru, A., Coardoş, D., Nicolau, D. - “A Model For Future Internet Of Things-Based Remote Monitoring Of Chronic

Diseases “; Proceedings of the IE 2018 International Conference - Iaşi, 2018
Andersson, Erik & Berggren, Zacharias - “A Comparison Between MongoDB and MySQL Document Store Considering

Performance”; http://www.diva-portal.org/smash/get/diva2:1161166/FULLTEXT01.pdf - 2017
Băjenaru, L., Marinescu, I. A., Tomescu, M., Savu, D. - “Biblioteca Naţională de Programe: O nouă abordare în

managementul produselor software” - RRIA, vol. 27, nr. 4, decembrie 2017; https://rria.ici.ro/rria-vol-27-
nr-4-2017

Nicolau, .D - “Consideraţii asupra bazelor de date NoSQL” - RRIA 2018
Tomescu, M., Savu, D., Marinescu, I.A. (2017). „Servicii Cloud de versionare cu suport baze de date NoSQL”. Revista

Romînă de Informatică şi Automatică (RRIA), Editura ICI,, vol. 27, nr. 3, septembrie 2017
Shalom, N. - “The Common Principles Behind The NoSQL Alternatives”, Dec 2009 http://natishalom.typepad.com/

nati_shaloms_blog/2009/12/the-common-principlesbehind-the-nosql-alternatives.html
Widner, Wess - “McAfee is Improving Global Cybersecurity With MongoDB” - 2020, https://www.mongodb.com/

customers/mcafee

