
11Fall 2020, No. 2, Vol. 2 / Romanian Cyber Security Journal

ROCYS 2020 / rocys.ici.ro

Securely Transferring Data
from BadUSB Devices

Marian TICU
University Politehnica of Bucharest, Romania

marianticu89@gmail.com

Abstract: The constant growth and improvement of BadUSB devices pose an increasing threat
from a cybersecurity perspective. Nowadays, regular USB devices could turn into BadUSB
devices by reprogramming the firmware. They achieve new features and can simulate other
peripheral devices like a keyboard or an external network adapter which could be used for
malware purposes: keystroke injection, malware delivery, data exfiltration, network hijack
or electrical damage. The manuscript addresses the topic of Bad USB devices and proposes
a mitigation solution based on a Raspberry Pi system with a custom-made kernel which
limits the attack surface by removing certain kernel modules.
Keywords: BadUSB, Raspberry Pi, USB data transfer, USB HID attack, USB security

INTRODUCTION
First developed in 1996 by USB-Implementers

Forum (USB-IF) in order to establish a universal
communication protocol between hosts and
devices, over the time, the USB protocol has
gained a widespread popularity through its
speed performances and small form factor
interface. In the nowadays, the USB interface
it is being used to connect mostly all known
peripheral devices (Ex: printers, storage devices,
audio-video devices, I/O devices, printers,
external cards, etc.) to a large set of hosts
(Ex: servers, PCs, tablets, smartphones, etc.).
In terms of performance, it offers a very high
bandwidth that is currently reaching speeds of
up to 10 Gbit/s USB 3.1, 20 Gbit/s USB 3.2 [USB-IF,
2017] or 40 Gbit/s USB 4 [USB-IF, 2020].

Apart from the obvious advantages, the
spread use of the USB protocol has created new
opportunities for hackers to bypass traditional
security policies. In 2014, Nohl, Krißler and Lell
demonstrated at BlackHat in Las Vegas that
USB devices can be reprogrammed to emulate
other types of devices like keyboards [Nohl,
Krißler, & Lell, 2014]. Basically, an attacker could
turn an existing USB hardware into BadUSB, by
rewriting its microprocessor firmware with an
infected version. The attack makes use of the
microprocessor firmware update function and it
is possible because current operating systems
don’t verify the firmware on the USB devices.
A regular USB memory stick device can be
reprogrammed to act like another device, like
a keyboard. Afterwards, the operating system

12 Romanian Cyber Security Journal / Vol. 2, No. 2, Fall 2020

ROCYS 2020 / Fall Edition

recognizes the device as a keyboard and acts
accordingly with the commands received just as
if a real user typed them.

Since then similar BadUSB devices have been
developed with more added features capable
of launching powerful cyber-attacks, such as
man-in-the-middle attacks. These devices
can be either built with ease using resources
publicly available on the Internet or can be
bought from different manufactures. The ease
of obtaining such a device combined with the
very low cost of production or purchase creates
new opportunities for hackers to infiltrate
inside computer networks.

One of the well-known manufacturers is Hak5
LLC [Hak5 LLC, 2020], which can offer special
crafted pentest tools that can be used for white
hacking activities, meaning only authorized
auditing sessions. One of their products, the
Rubber Ducky is a regular USB memory stick
looking device that can emulate a keyboard
which can be used for keystroke injection to
a victim guest. The commands which can be
delivered by the device can be configured
through a proprietary scripting language
called Ducky Script. In the hands of a hacker,
once plugged into a computer, this affordable
pentest tool can have devastating effects
which include command execution, malware
delivery or data exfiltration. Similar products
from the same manufacturer, with more
evolved features, are BushBunny, KeyCroc and
LanTurtle. The BashBunny is a Linux powered
device with remote shell access, capable of
mimicking serial, storage, keyboards and
network cards. The KeyCroc is a keylogger and
when specific keywords are typed it is capable
to run configured payloads. It can also be used
for remote shell. The LanTurtle looks like any
other usual external network adapters except
the fact that it can provide remote access and
can run man-in-the-middle attacks [Hak5 LLC,
2020].

Apart from the commercial solutions, there
are also multiple open source resources that
could be used to craft a BadUSB device with
ease. One of them is called TurnipSchool

[Dominic Spill, Michael Ossmann, Jared Boone,
2015]. The specificity of this device consists in
the fact that it is integrated in a USB cable and
can be controlled by radio.

The spread of BadUSB devices, the ease
of building one from scratch, like Spyduino
[Karystinos, Andreatos, & Douligeris, 2019], or
buying commercial products, like Rubber Ducky
[Hak5 LLC, 2020] or Malduino [MalDuino, 2020],
introduces a cyber security risk that must be
addressed and managed accordingly. This
kind of threat creates multiple attack vectors
opportunities that can bypass traditional
network security measures.

The visions of IT&C security companies
against BadUSB attacks focus around the ideas
of providing a software solution that whitelists
trusted USB devices and blocking all the
others [Endpoint Protector, 2020] or providing
trusted firmware signed USB devices that can
be accesed through dedicated software [Iron
Protector, 2020].

Without a BYOD [B. Alotaibi and H. Almagwashi,
2018] restricting policy in place, users could
bring already infected personal devices and
connect them to any asset in the internal
network, which could lead to compromising an
organization’s IT&C infrastructure by bypassing
all security layers of protection. Most of the
times, data is stored on USB external storage
devices with an unknown origin because they
are delivered by third parties the organization
works with. Organizations need to update
and strengthen their security policies to
withstand USB cyber threats. On each system,
only required peripheral devices should be
allowed functioning based on a whitelist [Nohl,
Krißler, & Lell, 2014] and all other available USB
ports should be disabled or blocked. At the
organization level, several points of transfer
must be established with designated systems,
usually these are dedicated workstations for
transferring data inside and outside of the
network.

This paper presents a cost-efficiently approach
of building a data transfer device that could be
used by organizations or individuals to protect

13Fall 2020, No. 2, Vol. 2 / Romanian Cyber Security Journal

ROCYS 2020 / rocys.ici.ro

their networks against USB commonly known
cyber-attacks. This system should be placed in
frontline, the first system that an untrusted USB
device should be first plugged in to.

METHODS
The USB protocol groups the USB peripheral

devices according to their functionalities
and organize them in a hierarchy of classes,
subclasses and protocols [Axelson, 2015]. For
example, a keyboard or a mouse connected
through USB will be associated to HID or Human
Interface Device class while a memory stick
will be linked with the Mass Storage class.
This information is used by the host operating
system to assign the required driver for proper
usage of the peripheral device capabilities.
In a Linux OS, a device driver can be directly
integrated into kernel or loaded as a module. By
removing specific device drivers, some device
functionalities would be inhibited.

Most of the rogue USB devices special crafted to
be used as cyber-attack vectors, like BashBunny
produced by Hak5, are successful because they
are able to disguise themselves as a keyboard
or external network card, and the OS to which
they are connected loads the kernel modules
responsible for HID or Communications and CDC
Control, ensuring them full operability.

This paper presents a method of building
a performant, accessible, and cost-efficient
data transfer device immune to BadUSB
cyber-attacks by recompiling OS kernel without
the modules that add support for USB features
which might pose a security threat by keeping
only the module responsible for Mass Storage
devices support.

The data transfer system consists of a small
form factor computer, the Raspberry Pi Model
3B+. The keyboard and mouse will become
unfunctional because HID support is going to be
removed from kernel. A Raspberry compatible
touchscreen will be used as an input method
because it uses a separate kernel module and
it still keeps working after removing the HID
support. If a touchscreen is not available, the

system can be controlled through SSH or remote
desktop protocols via network.

The Linux kernel has a modular structure,
meaning that it could adapt to various hardware
configurations by integrating only the required
modules. The integration can be done statically,
which means that modules are built into the
kernel and can’t be removed afterwards, or
dynamically, which gives the possibility to add
or remove modules from the kernel on-the-fly
while it is running.

The kernel module responsible for HID
support is called usbhid [Hallinan, 2010]. This
can be removed in two possible ways:

a) If the usbhid module is dynamically built as
loadable module it can be removed using any of
the Linux utils: modprobe or udev;

b) If the usbhid module is statically built
into the kernel, then the kernel needs to be
recompiled from sources. While the comfortable
way is to unload the usbhid module whenever it
is needed to, the safest solution is to build a
kernel without it.

There are two ways of building a kernel from
sources. It can be done directly on the system
that we intend to rebuild the kernel for or it can
be cross-compiled on another machine.

The entire process for cross-compiling
Raspberry Pi kernel [Foundation, 2020] requires
the following steps:

a) Download the kernel source code from
official Raspberry Pi repository on GitHub.

git clone --depth=1
https://github.com/raspberrypi/linux

b) Download the tools required for the building
processing.

git clone https://github.com/raspberrypi/
tools ~/tools

c) Update PATH (for x64 systems)
echo PATH=\$PATH:~/tools/arm-
bcm2708/gcc-linaro-armlinux-gnueabihf-
raspbian-x64/bin >> ~/.bashrc

d) Install or update the required dependencies
sudo apt-get install git bison flex
libssl-dev

e) Generate default configuration file (.config).
KERNEL=kernel7

14 Romanian Cyber Security Journal / Vol. 2, No. 2, Fall 2020

ROCYS 2020 / Fall Edition

structure: Device Drivers → HID Support → USB
HID Support → USB HID transport layer.

The Raspberry Pi’s touchscreen kernel module
(Figure 2) must be installed because the
keyboard and mouse support will be removed
and the touchscreen will get to be the only
method of user interaction available.

Beware of the unnecessary changes of the
configuration because even the smallest ones
can lead to a non-functional kernel.

g) Save configuration and start compiling the
kernel

make -j 12 ARCH=arm
CROSS_COMPILE=arm-linux-
gnueabihfzImage modules dtbs

The procedure to install the newly cross-
compiled kernel [Foundation, 2020] on Raspberry
Pi 3 model B+ follows the next steps:

h) Remove the microSD card from Raspberry,
connect it to the computer and mount the
existing partitions. It should have two partitions
by default: one for the boot order configured as
FAT32 and one as root file system configured as
EXT4.

mount /dev/sdb1 /mnt/fat32
mount /dev/sdb2 /mnt/ext4

i) Install modules

make ARCH=arm CROSS_COMPILE=arm-
linux-gnueabihfbcm2709_defconfig

f) Customize configuration through:
– Command line interface

make config
– Graphical User Interface tools like
 menuconfig or xconfig.

make ARCH=arm CROSS_
COMPILE=arm-linux-gnueabihf-
menuconfig
make ARCH=arm
CROSS_COMPILE=arm-linux-gnueabihf-
xconfig

Even though both menuconfig and xconfig
are similar, the xconfig (Figure 1) is more
user-friendly, better organized and it displays
additional information about kernel modules.
Through xconfig, the user can configure the
modules that can be included in the kernel
as static modules, the modules that can be
compiled as loadable modules or the modules
that can be excluded.

By default, the usbhid kernel module is built-in
into the Raspberry Pi’s kernel. In Figure 1, the
USB HID Support was disabled. This module can
be found on the following path of the kernel

Fig. 1: Using xconfig to exclude kernel modules

15Fall 2020, No. 2, Vol. 2 / Romanian Cyber Security Journal

ROCYS 2020 / rocys.ici.ro

env PATH=$PATH make ARCH=arm
CROSS_COMPILE=arm-linuxgnueabihf-
INSTALL_MOD_PATH=/mnt/ext4
modules_install

j) Back-up existing kernel
KERNEL=kernel7
cp /mnt/fat32/$KERNEL.img
/mnt/fat32/$KERNEL-backup.img

k) Install new kernel and copy all required files
cp ./arch/arm/boot/zImage
/mnt/fat32/$KERNEL.img
cp ./arch/arm/boot/dts/*.dtb
/mnt/fat32/
cp ./arch/arm/boot/dts/overlays/*.dtb*
/mnt/fat32/overlays/
cp ./arch/arm/boot/dts/overlays/
README /mnt/fat32/overlays/

l) Unmount partitions and reinsert microSD
into Raspberry and boot up.

umount /mnt/fat32
umount /mnt/ext4

The device can be used for transferring data
as follows:

a) The Raspberry Pi standalone:
‒ The operating system can be controlled

via touchscreen;
‒ The user can attach up to four storage

devices if it uses only the existing USB
ports on the Raspberry Pi or it can

expand to more than four using a USB
hub;

‒ The user can copy data between devices.
b) The Raspberry Pi connected to a PC through

Ethernet.
‒ For an improved level of security, it is

advised that the computer stands as an
isolated system;

‒ The user can control the Raspberry Pi
interface from the computer using
regular remote access protocols (VNC,
SSH);

RESULTS
By means of the method highlighted in the

current paper, a safe data transfer device was
crafted by modifying the OS kernel of a small
form factor computer, the Raspberry Pi. The
HID support was removed directly from the
kernel which makes the device a safe system for
plugging suspicious USB devices from untrusted
recipients in order to read or write data. This
solution prevents BadUSB cyber-attacks that
emulates human input devices like keyboards,
joysticks or mouses.

Since the keyboard or mouse would not
function anymore, the user has the possibility
to interact with the data transfer device via
touchscreen by using a virtual keyboard

Fig. 2:
Removing
USB HID
support

16 Romanian Cyber Security Journal / Vol. 2, No. 2, Fall 2020

ROCYS 2020 / Fall Edition

(Figure 3) or over a TCP/IP connection through
remote desktop or SSH protocols.

The same process could be extended to remove
any unneeded kernel module that might pose
a security risk, like the CDC module that adds
support for external network USB adapters.

In terms of performance, the Raspberry Pi 3
model B+ is equipped with four USB 2.0 ports,
theoretically sustain a data transfer at speeds
up to 480 megabits per second.

The device was tested using Hak5 BashBunny
configured to launch a HID attack that will run
a reconnaissance script on the target host and
save the output results on Bashbunny’s storage
space. BashBunny is a mini-computer with an
USB memory stick form factor. It is running
Linux operating system and it is powered by
a quad-core ARM Cortex A7 processor, 512 MB
DDR3 RAM memory and 8 GB storage. The
BashBunny can emulate some well-known
trusted USB devices (network card, serial
communication, flash storage, keyboard). When
it is used to simulate a keyboard, its actions can
be configured with a custom payload written in
Bunny Script. The device is very popular among
cyber security penetration testing experts and
has a wide range of payloads available.

The payload written in BunnyScript is:

Linux Reconnaissance
LED SETUP

ATTACKMODE HID STORAGE
GET SWITCH_POSITION
LED ATTACK
Q ALT F2
Q DELAY 500
Q STRING gnome-terminal
Q DELAY 500
Q ENTER
Q STRING export
output=/media/\$USER/BashBunny/loot/
LinuxRecon.txt
Q DELAY 500
Q ENTER
Q STRING export
runscript=/media/\$USER/BashBunny/
payloads/$SWITCH_POSITION/linuxrecon.sh
Q DELAY 500
Q ENTER
Q STRING bash \$runscript \$output
Q DELAY 500
Q ENTER
LED FINISH

The content of linuxrecon.sh is:
#!/usr/bin/env bash
echo -e „Linux Reconnaissance \n\r” > $1
echo -e „--------------------- \n\r” >> $1
echo -e „Running processes \n\r” >> $1
ps -ax >> $1
echo -e „\n\r”
echo -e „--------------------- \n\r” >> $1
echo -e „Network config \n\r” >> $1

Fig. 3: Virtual
keyboard

17Fall 2020, No. 2, Vol. 2 / Romanian Cyber Security Journal

ROCYS 2020 / rocys.ici.ro

ACKNOWLEDGMENTS
The work has been funded by the Operational Programme Human Capital of the Ministry of European Funds through
the Financial Agreement 51675/09.07.2019, SMIS code 125125.

REFERENCE LIST

Axelson, J. (2015). USB Complete Fifth Edition. Madison, United States: Lakeview Research, U.S. Retrieved 2020, from
https://en.wikipedia.org/wiki/USB

B. Alotaibi and H. Almagwashi. (2018). A Review of BYOD Security Challenges, Solutions and Policy Best Practices.
1st International Conference on Computer Applications Information Security (ICCAIS). Riyadh.

Dominic Spill, Michael Ossmann, Jared Boone. (2015). NSA Playset: USB Tools. ShmooCon Proceedings. Retrieved
2020, from NSA Playset: http://www.nsaplayset.org/turnipschool

Endpoint Protector (2020). Retrieved from https://www.endpointprotector.com/
Foundation, R.P. (2020). Raspberry Pi kernel building. Retrieved 2020, from https://www.raspberrypi.org/

documentation/linux/kernel/building.md
Hak5 LLC (2020). Hak5. Retrieved 2020, from https://hak5.org
Hallinan, C. (2010). Embedded Linux Primer: A Practical Real-World Approach. Prentice Hall.
Iron Protector (2020). Retrieved from http://www.ironprotector.com/
Karystinos, E., Andreatos, A., & Douligeris, C. (2019). Spyduino: Arduino as a HID Exploiting the BadUSB Vulnerability.

2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), (pp. 279-283).
MalDuino (2020). Retrieved 2020, from https://malduino.com/
Nohl, K., Krißler, S., & Lell, J. (2014). BadUSB - On accessories that turn evil. Preluat de pe Security Research Labs:

https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
USB-IF (2017). Universal Serial Bus 3.2 Specification. Retrieved from https://www.usb.org/document-library/usb-32-

specification-released-september-22-2017-and-ecns
USB-IF (2020). Universal Serial Bus 4 (USB4™) Specification. Retrieved from https://www.usb.org/document-library/

usb4tm-specification

ifconfig -a >> $1
echo -e „\n\r”
echo -e „--------------------- \n\r” >> $1
echo -e „Network connections \n\r” >> $1
netstat >> $1
echo -e „\n\r”
echo -e „--------------------- \n\r” >> $1
echo -e „Users \n\r” >> $1
cat /etc/passwd >> $1
echo -e „\n\r”
echo -e „--------------------- \n\r” >> $1
echo -e „USB \n\r” >> $1
lsusb >> $1
echo -e „\n\r”
echo -e „--------------------- \n\r” >> $1
sync

 The safe data transfer device prevented
BashBunny’s HID attack.

CONCLUSIONS
This paper presents a low cost efficient and

safe data transfer device that could be used
by any organization or individual to empower
the procedures and cyber security policies
regarding the access to the data from untrusted
USB storage devices. Along with a security
policy of blocking USB ports on all computers
on the network, the procedure for transferring
data from outside to inside and from inside
to outside using USB storage devices must
consider defining single points for data transfer
that use safe data transfer devices.

The design simplicity and low costs of
development make it accessible to IT Security
Staff that could be using it to raise the
cybersecurity resilience of their organizations.

