
69Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

Neural Networks and Deep
Learning in Cyber Security

INTRODUCTION
In nowadays, large scale digitalization and

informatics globalization with worldwide
Internet connectivity and huge amounts of
various data generated, transmitted, stored and
retrieved with high pace (Big Data), augmented
our reality with new dimensions in almost
all the fields and at all levels: governmental,
military and security, medical, financial and
economic, social, cultural, educational etc.
The number of individuals accessing the
information online is increasing daily, but also
the cyber threats are inherently increasing. Cyber
events are inevitable and their impact could be
more disastrous than one could even imagine.

Cyber security refers to data and devices protection
against various cyber threats. It comprises a set of
methods, technologies, and processes designed
to prevent, avoid or at least minimize the risks
and damages that may arise from possible
attacks against informatics systems and networks,

unauthorized access, data theft, modification or
destruction. Cyber security involves both network
security and host security systems, every of those
having today a firewall, and/or antivirus (AV)
software, providing an intrusion detection system
(IDS). A host-based IDS (HIDS) is using the host
system event log for watching over the system
operation and states to detect unauthorized
installation or access, while also checking the state
of RAM and file system whether some expected
data exist there or not [1]. A network-based IDS
(NIDS) is placed on “demilitarized zone” (DMZ) [2]
at the edge of the network. It analyses network
traffic in real-time for detecting unauthorized
intrusions or malicious attacks. There are two
types of detection techniques: anomaly detection,
that catches attacks by comparing behaviors
for identifying abnormal vs. normal ones, and
misuse (or signature-based) detection, that
detects the attacks based on previously known
knowledge [3].

Mihnea Horia VREJOIU
National Institute for Research and Development in Informatics - ICI Bucharest

mihnea.vrejoiu@ici.ro

Abstract: In the last years, the deep learning (DL) technology using various deep neural
network models / architectures became the state-of-the-art in Machine Learning (ML) and
Artificial Intelligence (AI), its applications reaching better performances than humans in
more and more domains. While traditional ML techniques were mainly based on certain
mandatory initial “hand-crafted” feature extraction and engineering phase, the new DL
approach is automatically performing this step of specific feature representations extraction
directly from the raw input training samples. This intrinsic ability makes it applicable to
various issues that cyber security is currently dealing with, such as: intrusion detection,
malware classification and detection, spam and phishing detection and binary analysis.
In this paper we are intending a brief overview of artificial neural networks and some
examples of deep learning based solutions in cyber security.
Keywords: artificial neural network, deep learning, cyber security, intrusion / malware /
spam / phishing detection, traffic analysis, binary analysis.

70 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

Cyber threats represent one of the greatest and
permanent dangers for global economies today,
being expected that the total costs of the cyber
crime damages will reach almost one trillion
dollars this year [4]. On the other hand, in the last
years, the deep learning (DL) technology based on
learning data representations (as opposed to task-
specific algorithms) using various deep neural
network (DNN) types / models / architectures
became the state-of-the-art in Machine Learning
(ML) and Artificial Intelligence (AI), its applications
exceeding human performance in more and
more domains. In these circumstances, the cyber
security industry is currently investing heavily in
ML in hope of providing a more dynamic deterrent
to cyber crime. ABI Research forecasted that ML
in cyber security will boost big data, intelligence,
and analytics spending up to 96 billion dollars
by 2021 [4]. It is considered that “this AI security
revolution will drive ML solutions to soon emerge
as the new norm beyond Security Information and
Event Management (SIEM), and ultimately displace
a large portion of traditional AV, heuristics, and
signature-based systems within the next five
years”. User and Entity Behavioral Analytics (UEBA)
along with DL algorithms design are emerging
as the two most prominent technologies in
cyber security. More and more feature-agnostic
models, deep learning, and natural language
processing will be employed as a response to the
increasingly menacing nature of unknown threats
and multiplicity of threat agents.

This paper presents a brief overview of artificial

neural networks (ANN) and of some examples
for possibilities of using DL techniques in cyber
security applications, while also highlighting
the advantages of DL algorithms in classifying
and correlating malicious activities from
various sources. Unlike other ML approaches,
DL algorithms don’t need any previous “hand-
crafted” feature extraction / engineering,
and also provide feature visualizations.
They are automatically extracting best options
by themselves [5]. Data to be analyzed in cyber
security is mostly in the form of strings / texts,
as well as binary executable code. To convert
strings / texts to real valued vectors, various
preprocessing and analysis techniques are
employed along with deep learning.

The rest of this paper is organized as follows.
Section 2 provides a brief historical overview
of various models of artificial neural networks
(ANN) as base architectures for deep learning. In
Section 3, some DL based solutions for several
cyber security use cases are presented. Finally,
Section 4 is gathering a few conclusions.

ARTIFICIAL NEURAL NETWORKS AND
DEEP LEARNING

An artificial neuron is modeling in a simplified
way, through a mathematical function, a real
neuron from a biological neural network such
as the brain. The artificial neuron represents the
elementary unit of an artificial neural network.

Like the biological neuron, which has dendrites
and an axon, the artificial neuron has a simple

Figure 1. Artificial neuron is modeling in a simplified
manner the biological neuron. (Source: Karpathy, 2015 [6])

71Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

tree structure with input nodes and an output
node connected to all these ones. The artificial
neuron gets several input values analogues to the
post-synaptic excitation/inhibiting potentials
applied to the dendrites of the biological neuron.
These input values are summed producing an
output activation value, analogue to the action
potential transmitted along the axon in the case
of the biological neuron. Each input value xi is
individually weighted in the sum (with a weight
wi) and the result is passed to the output through
a non-linear function (f) called activation (or
transfer) function.

The simplest artificial neural network is the
“perceptron”, composed by a single artificial
neuron. It was introduced by Frank Rosenblatt
(1958) [7], based on research of Warren
McCulloch and Walter Pitts (1943) [8]. The
perceptron computes the weighted sum of its n
input values xi:

y = w•x+b = Σwi•xi + b; i = 1÷n (1)
and then applies a non-linear function (i.e.
signum function) to the resulted value:

 –1, for y < 0;
f(y) = |y| / y = 0, for y = 0; (2)
 +1, for y > 0.
The bias b (offset), represents the activation

threshold value of the perceptron and may be
considered as a (n+1) supplementary input, with
value x0 = 1 and weight w0 = b, both constants,
allowing to shift the activation function to the left
or right as necessary along the training process.

The perceptron is a linear classifier that can
perform binary classification (in two classes,
e.g. coded by numerical values, e.g. 0 and 1)
in the case of linearly separable data applied
at input, by separating the output values
greater or lesser than a certain threshold.
These later one together with the weights must
be empirically set up in a configuration phase for
each classification problem in the absence of a
training algorithm. Rosenblatt, 1962 [9] proposed
an iterative training algorithm for setting up the
weights of the perceptron. The algorithm starts
with a set of randomly chosen, non zero, small
weights, and compares at each iteration the
output obtained for each input vector with the
real/correct class (code) to which the respective

input vector belongs, adjusting the weights
thus that to eliminate any classification error.
If at the end of an iteration (after a number
of steps equal to the number of training input
vectors) no weight adjustment has been made,
it means that all the respective training vectors
have been correctly classified. The obtained
weights vector represents a solution of the
respective training problem and the algorithm
stops. Otherwise, a new iteration starts. In the
case that within an empirically preset maximum
number of iterations nmax not all the training
vectors succeeded to be correctly classified,
it means that the two classes are not linearly
separable and the algorithm is stopped,
the problem couldn’t being solved with the
perceptron. Rosenblatt, 1962 [9] also formulated
and demonstrated the „perceptron convergence
theorem”: For a training set composed by two
subsets of vectors corresponding to two linearly
separable classes, the training algorithm will
converge after a finite number of iterations n,
resulting a weights vector w(n) = w(n+k), Vk>0,
as (not necessarily unique) solution of the
training problem.

The perceptron has multiple limitations,
among which the most known is that it can’t
model the binary logical function XOR, whose
values 0 and 1 for all possible combinations
of the binary input variables are not linearly
separable. Such limitations were overpassed
once the multilayer perceptron (MLP) model
was developed. The MLP is structured as a
sequence of connected layers of perceptrons,
with an input layer that receives an input vector
of values, an output layer that makes a decision
or prediction on the input, and - in between
these two - one or several hidden layers,
whose component perceptrons are effectively
performing the MLP computations. Layers are
completely connected, each perceptron in a
layer being connected to all the perceptrons
of the previous thus fully connected (FC) layer.
Each connection has its own weight. The output
of each layer represents the input for the next
layer in the sequence.

In the case of the MLP architectures with two
or more hidden layers one can already speak

72 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

about a “deep neural network” (DNN), while for
only one hidden layer, usually about a “shallow
neural network” (which is often used mainly for
the single perceptron).

The MLP is a “feedforward” network, since its
connections are followed from input to output,
layer by layer, exclusively forward, and the output
values resulted in a higher level don’t affect in
any way the output values of previous layers.
While in the case of single perceptron the input is
used to immediately compute the output, in the
case of feedforward MLP the data is sequentially
processed for each layer, one by one.

Also, MLP uses another kind of activation
function, derivable (whose result doesn’t jump
instantly from negative to positive values,
but has a smooth continuous passage), that
allow training. Usually, sigmoid functions are
employed, such as logistic function:

f(x) = 1/(1+e-x), (3)
or hyperbolic tangent:
f(x)=tanh(x)=(ex–e-x)/(ex+e-x). (4)
The MLP feedforward network can classify

input data in a preset number of classes equal to
the dimension of the output. The input vectors
must contain specific values coding the relevant
features for identifying and discriminating among
data classes. It is therefore necessary that those
features be previously extracted (identified) for
each category of classification problem. Feature
extraction is usually a nontrivial task, requiring
domain knowledge and expertise.

The values of all the weights for all the
connections are set up by supervised training

using a set of labeled input vectors (belonging to
all possible classes, identified by the respective
label value each). The most used supervised
training method is “backpropagation”, and was
initially proposed by Paul Werbos, 1974 [10].
The training algorithm is based on the
propagation of the classification error backwards
from final layer to previous ones, layer by layer,
and is adjusting the weights of the connections
for minimizing that error. David Rumelhart et
al., 1986 [11] „rediscovered” and successfully
applied the backpropagation algorithm for
training multi-layer networks through parallel
distributed processing. The method consists
in a continuous iterative process of supervised
learning by adjusting and fine-tuning network
structure (i.e. the values of the weights of its
connections, initialized first with random small
values) at each iteration step. It’s an iterative
optimization process that is reducing iteration
by iteration the error (i.e. the difference between
the expected and obtained output, estimated
using a cost / loss function). The most used
optimization algorithm for weights adjustment
is “gradient descent”, with its variants, based
on which it is decided at each iteration which
weights are to be adjusted by following the
descent gradient of the error (as a function of
weights). By measure that the error is reduced,
iterations become more refined. The process
could take thousands of iterations until the
computed output closes enough to the expected
one, moment when it may be considered that
the network is completely trained.

Figure 2.
MLP / DNN
fully connected
feedforward
general
architecture.

73Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

A trained MLP establishes (through the values
of the weights) links between the training input
vectors and the output values corresponding
to these ones, somehow like when defining a
function through a table of its values. In this
context, it was formulated and demonstrated
the “universal approximation theorem” (George
Cybenko, 1989 [12]; Kurt Hornik, 1991 [13]), stating
that a feedforward MLP network with (only) one
hidden layer and a finite number of neurons
can model (as polynomial approximation) any
function that is continuous on compact subsets
of Rn of any complexity with enough precision,
provided that there are enough neurons in
the hidden layer and appropriate activation
functions are used.

Even if with the supervised training algorithm
using backpropagation and gradient descent,
MLP networks meant a big step forward, in
the case of more hidden layers, they still have
serious limitations. These are due to the sigmoid
activation function, which leads to a quick
saturation at multiple derivations from layer
to layer backwards, the so-called “vanishing
gradient”, thus that weights of initial layers
couldn’t be correctly set up. In 2006 Geoffrey
Hinton [14],[15] proposes some revolutionary
ideas of initializing the parameters of the neural
network with values closer to the optimal ones
by using Restricted Boltzmann Machine (RBM)
units / Deep Belief Network (DBN). The method
consist in an initial unsupervised pre-training
of the RBM network layer by layer thus that the
weights get to model the intimate structure of
the training input data. Those weights are then
fine-tuned using supervised backpropagation,
thus eliminating the vanishing gradient
problem. In 2007, Yoshua Bengio [16] introduced
autoencoders (AE) instead of RBM for the
unsupervised pre-training of the network,
which have been further developed with some
variation (denoising AE, sparse AE etc.). In 2010,
James Martens [17] presented another algorithm
for setting up the parameters using second
order derivates without any prior unsupervised
pre-training, which got even better results.
Moreover, the same year, by directly using the
classical backpropagation algorithm with a deep

and wide network, on GPUs, by using for training
slightly elastically deformed patches from
images, without any other helping algorithm for
initializing the weights, Dan Cireșan [18] obtained
0.35% error rate on the MNIST image set.
The same group, this time using convolutional
neural network (CNN) and max pooling [19]
without any other prior pre-training, established
in 2011 the record on MNIST, of 0.23% error rate,
a better than human performance.

Thus, in the last years artificial neural networks
had known an impressive development,
sustained (also) by the technological evolution
in what concerns the storage and computing
capacities and speed using GPUs, and the
data acquisition devices, as well as by the
large amounts of data of all kinds that became
available (Big Data), able to provide enough
information about the complexity and variety of
the real world. New deep neural network (DNN)
models and architectures have been developed,
either inspired from neurosciences, either based
on computational engineering reasons, deep
learning technology becoming today almost
synonym with ML and AI.

Convolutional neural networks (CNNs or
ConvNets) are inspired by the mechanisms within
the visual cortex of the brain (Hubel & Wiesel,
1959 [20]). The neurons from a convolutional
layer are connected not with all the neurons
from the previous layer as in the MLP, but rather
with only a few of them, located in a small
vicinity (receptive field). This way they are able
to become sensitive to certain local features,
also providing invariance to shifting position of
those features. When stacked together, higher
convolutional layers integrate simple features
from previous layer(s) into more complex ones.
The output of each convolutional layer provides
a feature map (activation map). The weights of
each neuron’s input connections in a (slice of
a) convolutional layer are the same (shared),
defining the specific “filter” for a certain
feature in whatever position in the previous
layer’s feature map. In fact, a convolutional
layer is composed of more than one “slices”,
each corresponding to a certain feature (filter).
A first model of convolutional networks was the

74 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

Neocognitron proposed by Kunihiko Fukushima,
1980 [21], (after he introduced the Cognitron
[22] in 1975). The first successful application
of CNN dated from the 90’s and is represented
by LeNet-5 architecture (Yann LeCun, 1989;
1998 [23],[24]) that was largely employed for
recognizing hand-written digits on checks and
other paper forms in the banking environment.

In general, a CNN is composed by a sequence
of two parts. The first one alternates several
(or more) convolutional layers having local
connectivity (receptive fields) with some down-
sampling ones (max pooling / average pooling)
that reduce the spatial dimensions, also having
local connectivity. This initial convolutional
part is performing automatic feature extraction
from the input data. The most used activation
function for the convolutional layers is the
Rectified Linear Unit - ReLU (Hahnloser, 2000;
2001 [25],[26]; Nair, 2010 [27]; Glorot, 2011 [27]):

f(x)=max(0,x). (5)
The final part of such a deep neural network

consists in one or more fully connected
layers (a MLP classifier), which perform(s) the
classification using as input the output of the
initial convolutional part (i.e. a feature vector
automatically generated by that one).

Significant improvements and innovations on
CNN models/architectures and training methods
emerged in the context of the ImageNet Large
Scale Visual Recognition Challenge - ILSVRC
annual competitions (2010-2017) based on the
ImageNet image set [28], including:

• AlexNet [29] (2012), with 8 layers which provided
a 15,4% error rate in image classification;

• ZFNet [30] (2013), also with 8 layers but with
11,2% error rate;

• GoogLeNet/Inception-v1 [32] and VGGNet

[32] (2014), with 22, respectively 16-19 layers and
6,7%, respectively 7,3% error rate.

• ResNet [33] (2015) with 152 layers and 3,57%
error rate (better than human performance of
about 5%).

• DenseNet [34] (2016) and SENet [35] (2017),
with over 200 layers and 2,99%, respectively
2,251% error rate.

CNNs are widely used today mainly in
the Computer Vision (CV) field for image
classification, image segmentation, object/
face/pattern recognition, scene labeling,
human pose recognition, action recognition or
document analysis, as well as in the Natural
Language Processing (NLP) field, for speech
recognition or text classification.

The number of training samples is very
important in the case of deep neural networks
(DNN). It is considered that a supervised DL
algorithm will perform acceptably if trained
with about 5,000 examples per class, and will
surpass human performance if the training set
contains at least 10 mil. labeled examples (Ian
Goodfellow et al., 2016 [36]). For having similar
success with smaller labeled training sets,
researches are done today for valorizing huge
amounts of unlabeled data with unsupervised
or semi-supervised training methods.

Other state-of-the-art DNN models / architectures
successfully employed today include: Autoencoders
(AE), Recurrent Neural Networks (RNN), and Long
Short Term Memory (LSTM).

An AutoEncoder (AE) is a type of artificial neural
network used to learn efficiently compressed /
coded data representations in an unsupervised
manner for dimensionality reduction, by
training the network to ignore signal “noise”.
A reconstructing part is simultaneously trained

Figure 3.
LeNet-5
architecture.
(LeCun, 1998
[24]

75Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

for generating / reconstructing from the reduced
encoding (named code or latent representation)
an output as close as possible to its original
input. In its simplest form, an AE architecture
is a feedforward neural network similar to the
multi-layer perceptron (MLP), having an input
layer, an output layer and one or more hidden
layers connecting them, with input and output
layers having the same dimension, and hidden
code layer (but not necessarily all other hidden
layers) of lower dimension.

If trained with normal / regular good data,
AE may be used for anomaly detection in

further data, since anomalies in input
will produce significantly different output
than respective input. An autoencoder
is a dense neural network and each
variable influences the output of the
other variables, therefore in case of some
abnormal values at input it will produce a
large reconstruction error thus capturing
irregularities. On the other hand, the
encoding part of a trained autoencoder
is actually performing automatic feature
extraction and the latent representation (as
a feature vector) may be further used as input
by a classifier if label for the corresponding AE
input is available. There are several variations
of autoencoders: Sparse, Denoising, Variational,
Contractive, Generative AE.

Recurrent neural networks (RNNs) are a class

of artificial neural network where connections
between nodes form a directed graph along a
temporal sequence, which allows them to exhibit
temporal dynamic behavior. Unlike feedforward
neural networks, RNNs have cyclic connections
and are using their internal state (memory),
which make them powerful for modeling input
sequences (of various length). This makes
them applicable to tasks such as unsegmented,
connected handwriting recognition or speech
recognition. For learning variable-length input
sequences, back propagation through time
(BPTT) [38] is used. In BPTT, the model is first
trained with the training data, then the output
error gradient is saved for each time step.

A RNN uses an input vector sequence X=(x1,
x2, ..., xT) and a hidden vector sequence H=(h1,
h2, ..., hT) to produce an output vector sequence
Y=(y1, y2, ..., yT). A traditional RNN calculates
the hidden and output vectors sequences as
follows:

ht= σ(Wx•hxt+Whh•ht−1+bh), (6)
yt= Why•ht+by, (7)

where t=1÷T, σ is a nonlinearity function, W is
a weight matrix, and b is a bias. A finite impulse
recurrent network is a directed acyclic graph
that can be unrolled / unfolded and replaced
with a feedforward neural network (while an
infinite impulse recurrent network is a directed
cyclic graph that can not be unrolled).

RNNs raises vanishing gradient problems in
handling long term dependencies, and are very
difficult to train when the number of parameters
is extremely large. The unfolded network
becomes huge, posing convergence problems.

These issues can be avoided by RNNs with
additional stored state, and storage under direct
control by the neural network. The storage can

Figure 4. General architecture of an autoencoder
network (Source: [37])

Figure 5. Unfolding a recurrent neural network (Source: [39])

76 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

also be replaced by another network or graph,
if that incorporates time delays or has feedback
loops. Such controlled states are referred to
as gated state or gated memory, and used by
Long Short-Term Memory networks (LSTMs) and
Gated Recurrent units (GRUs).

Long Short-Term Memory networks (LSTMs),
introduced by Hochreiter & Schmidhuber [40],
are a special kind of RNNs, which provide the
capability to learn long-term dependencies in
sequences of data. In LSTM-RNNs, the repeating
module in the chain like structure has a slightly
different structure. Instead of having a single
neural network layer, there are multiple layers,
interacting in a very special way. A LSTM cell has
an input gate, a forget gate and an output gate.
Equations to compute the values of the three
gates and cell state:

it=σ(Wxi•xt+Whi•ht−1+Wci•ct−1+bi), (8)
ft=σ(Wxf•xt+Whf•ht−1+Wcf•ct−1+bf), (9)
ct=ft•ct−1+ic•tanh(Wxc•xt+Whc•ht−1+bc), (10)
ot=σ(Wxo•xt+Who•ht−1+Wco•ct+bo), (11)
ht=ot•tanh(ct), (12)

where: σ is the logistic sigmoid function, and i,
f, o and c are respectively the input gate, forget
gate, output gate and cell state, and Wci, Wcf and
Wco are denoted weight matrices for peephole
connections. In LSTM, three gates (i, f, o) control
the information flow. The input gate decides
the ratio of input. When calculating the cell
state, this ratio has effect on the equation (10).
The forget gate passes the previous memory
ht−1 or not. The ratio of the previous memory
is calculated in the equation (9) and used for
the equation (10). The output gate determines
whether passing the output of memory cell
or not. The equation (12) shows this process.
LSTMs can solve the vanishing and exploding

gradient problems due to the three gates. In
LSTM-RNN architecture, the recurrent hidden
layer is replaced by LSTM cell.

LSTMs proved to work extremely well on a large
variety of problems, being now widely used in
speech recognition, text-to-speech synthesis,
and automatic image captioning.

Another efficient RNN architectures are the
Gated Recurrent Units (GRUs), a variant of
LSTMs, but simpler in their structure and easier
to train. Their success is primarily due to the
gating network signals that control how the
present input and previous memory are used to
update the current activation and produce the
current state. There are (only) two gates: reset
and update. These gates have their own sets
of weights that are adaptively updated in the
learning phase.

APPLICATIONS IN CYBER SECURITY

REFERENCE DATASETS
No deep learning algorithm can be thought

of without having a comprehensive, problem
specific labeled dataset available for supervised
or semi-supervised learning, validation and
test of the models. There are several publicly
available datasets used as benchmarks for
developing and testing systems for various
cyber security use cases, but most of them are
quite old, and each of those has own limitations.
Verma, 2018 [42] presented a brief study over
the needs of Security domain to overcome
such issues, and datasets and key features of
data science for problems of cyber security
are discussed. A GitHub repository with a list
of cyber security datasets links, among other
interesting stuff, may be found at [43]. Also, in

his quite comprehensive repository
[44], Mike Sconzo attempts to keep
“a somewhat curated list of Security
related data”. Links to various
datasets (among other own and 3rd
parties stuff) may be found there,
organized on topics like: Network,
Malware, System, File, Password,
Threat Feeds, Other.

Some example datasets among the Figure 6. A LSTM network cell. (Source: [41])

77Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

most employed ones include by example:
• The KDD Cup 1999 Data [45],[46], which is the

dataset used for the 3rd International Knowledge
Discovery and Data Mining Tools Competition,
held in conjunction with the 5th International
Conference on Knowledge Discovery and Data
Mining – KDD-99. The competition task was
to build a network intrusion detector (NID),
a predictive model capable of distinguishing
between “bad’’ connections, called intrusions
or attacks, and “good’’ normal connections. The
KDD Cup ‘99 database contains a standard set
of data to be audited, which includes a wide
variety of intrusions simulated in a military
network environment.

• The NSL-KDD dataset [47] which is an
improved version of the KDDcup99 one,
eliminating this one’s main deficiencies due to
the huge number of redundant records, which
causes the learning algorithms to be biased
towards the frequent records, and thus prevent
them from learning unfrequent records which
are usually more harmful to networks, such as
U2R and R2L attacks. In addition, the existence
of these repeated records in the test set caused
the evaluation results to be biased by the
methods which have better detection rates on
the frequent records.

• The ADFA Intrusion Detection Datasets
(2013) [48],[49],[50], which cover both Linux
and Windows, and were designed at Australian
Defense Force Academy for evaluation by system
call based HIDS.

In recent days, for boosting up the systems
performance and for offering a standard
benchmark for their evaluation, some “shared
task” is organized as part of the conferences
and symposiums. In such shared task, initially
a train dataset is distributed to the participants
and their learning models are evaluated on a
test dataset. Recently, IWSPA 2018 [51] organized
a shared task on identifying phishing email,
details of the submitted runs being available in
[52], and a shared task on detecting malicious
domain (DMD 2018) [53], organized as part of
the 6th International Symposium on Security
in Computing and Communications (SSCC
2018) and 7th International Conference on

Advances in Computing, Communications and
Informatics (ICACCI 2018) [54]. These two shared
tasks allowed participants to present their
approaches through working notes or systems
description papers. Yearly there is also a shared
task conducted by the Cybersecurity Data Mining
Competition (CDMC), providing also an option to
submit system description papers starting with
CDMC 2018 [55].

INTRUSION DETECTION
An intrusion detection system (IDS) is a

device or software application that monitors
a network or system for malicious activity or
policy violations, reporting those either to
an administrator or to a security information
and event management (SIEM) system able to
combine multiple sources and filter false alarms.
There are network intrusion detection systems
(NIDS) and host-based intrusion detection
systems (HIDS). IDS are either using misuse
detection (signature-based), recognizing bad
patterns, such as malware, or anomaly-based
detection, detecting deviations from a pattern
of normal/good traffic, which often relies on
machine learning. Some IDS products have the
ability to also respond to detected intrusions,
being referred as intrusion prevention systems
(IPS).

Staudemeyer and Omlin, 2013 [56] evaluated
the performance of LSTM-RNN on classifying
intrusion detection data, LSTM networks being
able to model data as time series. A processed
version of the KDD Cup ‘99 dataset was used for
training and test. Some suitable performance
measures are used. LSTM network structure and
parameters are experimentally set up. Results
showed that LSTM is able to learn all attack
classes hidden in the training data.

Javaid et al., 2015 [57] proposed a deep learning
based approach to implement an effective and
flexible NIDS using self-taught learning (STL) on
the NSL-KDD dataset, showing that such NIDS
are promising in detecting unknown network
intrusions.

J. Kim et al., 2016 [41] implemented an IDS model
with deep learning approach, using a classifier
based on LSTM-RNN, and evaluated the model.

78 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

A training dataset was generated by extracting
instances from KDD Cup ‘99 dataset. Learning rate
and hidden layer size were experimentaly chosen.
10 test datasets were used for measuring the
performance. The LSTM-RNN classifier showed
higher detection ratio than other classifiers.
Still, false alarm ratio was slightly greater.

G. Kim et al., 2016 [58] proposed a system-
call language modeling approach for designing
anomaly-based HIDS. An ensemble method
blending multiple threshold based classifiers into
a single one, making it possible to accumulate
“highly normal” sequences was employed, which
significantly reduces false-alarm rates common
to conventional methods. System calls represent
low-level interactions between programs and
the OS kernel and are easy to collect in a large
quantity in real-time. Many researchers consider
system-call traces as the most accurate source
useful for detecting intrusion in anomaly-based
HIDS. The proposed system-call language model
can learn the semantic meaning and interactions
of each system call. The method consists of two
parts: the front-end is for language modeling of
system calls in various settings, and the back-
end is for anomaly prediction based on an
ensemble of threshold based classifiers derived
from the front-end. The front-end uses LSTM on
hidden layer, while at the output layer, a softmax
activation function is used to estimate normalized
probability values of possible calls coming next
in the sequence. The sequence representation
learned from the final state vector of the LSTM
layer after feeding all the sequences of calls is
used by the back-end part. For comparison, two
baseline classifiers commonly used for anomaly
detection are used: k-nearest neighbor (kNN)
and k-means clustering (kMC). Through diverse
experiments on public benchmark datasets
- mainly on ADFA-LD dataset - the validity
and effectiveness of the proposed method is
demonstrated.

Vinayakumar et al., 2017 [59] evaluated the
effectiveness of various traditional ML methods
(logistic regression, naive Bayes, k-nearest
neighbor, decision tree, AdaBoost, random forest,
support vector machine) and DNNs (MLP, DBN) in
NIDS. For training and evaluation, the KDD Cup ‘99

and NSL-KDD datasets were used, in both binary
and multiple-classes classification settings. DNNs
performed better in most of the cases. That was
mainly due to their capability to pass information
through several layers for hierarchically learning
the underlying hidden patterns of normal and
attack network connection records, and to
finally aggregate the learned features of each
layer together to effectively distinguish further
between such records.

Also Vinayakumar et al., 2017 [60] modeled
network traffic as time-series, particularly TCP/
IP packets in a predefined time range, with
supervised learning methods on various deep
architectures such as MLP, CNN, CNN- RNN, CNN-
LSTM and CNN-GRU, using millions of known good
and bad network connections. For evaluating these
approaches, the KDD Cup ‘99 dataset was used.
Comprehensive analysis of all the architectures with
their topologies, network parameters and network
structures was done to select the optimal ones.
Experiments showed that the used various CNN
architectures performed better than traditional ML
classifiers. This was mainly due to the CNN capability
to extract high level feature representations that
represent the abstract form of low level feature
sets of network traffic connections.

Leila Mohammadpour et al., 2018 [61] proposed
a deep learning method to implement an effective
and flexible NIDS using CNN and DL for binary
classification (normal vs. abnormal cases) on
the NSL-KDD benchmark dataset. Experimental
result of 99.79% detection rate on the test dataset
showed that CNNs can be successfully applied as
learning method for NIDS.

Shone et al., 2018 [62] presented a deep learning
technique for NIDS, using non-symmetric deep
autoencoder (NDAE) for unsupervised feature
learning. They also proposed a novel deep
learning classification model on stacked NDAEs
using GPU, evaluated using the benchmark
KDD Cup ‘99 and NSL-KDD datasets. Promising
results have been obtained, demonstrating
improvements over existing approaches and
strong potential for use in modern NIDS.

Application of DNNs is analyzed also by Rahul
Vigneswaran et al., 2018 [63]. DNNs were utilized
to predict attacks on NIDS using KDD Cup ‘99

79Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

dataset for training and benchmarking the
network. For comparison purposes, training is
done with several other classical ML algorithms
and DNNs with 1 to 5 hidden layers on the same
dataset. A DNN with 3 layers showed superior
performance over all the other classical ML
algorithms.

MALWARE DETECTION
Malware (from malicious software) refers to any

software intentionally designed to cause damage
to a computer (standalone or in a network) once
somehow introduced into this one. It can be in
the form of executable code, scripts, or other
active content, and is often referred as computer
viruses, worms, Trojan horses, ransomware,
spyware, adware etc. Malware is acting against
the interest of the computer user. It may disrupt
data files in the system reducing performance
and increasing vulnerability. In some cases it
will lead to total corruption of the host system.
Malwares are easily passed through various
environments using unauthorized software tools.
One strategy for protecting against malware is to
prevent the malware from gaining access to the
target computer. Antivirus software and firewalls
are protecting against the introduction of
malware in addition to checking for the presence
of malware and malicious activity and recovering
from attacks.

Dahl et al., 2013 [64] presented a large-scale
malware classification system which utilizes
random projections to reduce the input space.
Neural networks trained on random projections
provided a 43% reduction in the error rate
compared to the baseline logistic regression
system using all the features. The obtained
0.49% two-class error rate for the one-layer
neural network with random projections and
0.42% two classes error rate for the ensemble
of neural networks offered state-of-the-art
performance. GPUs were employed for training
with 2.6 million examples in less than three
hours. No accuracy gain was obtained by adding
additional hidden layers, two and three hidden
layers models even performed slightly worse.

Yuancheng Li et al., 2015 [65] proposed a hybrid
malicious code detection scheme based on deep

learning: first, reducing dimensionality of the
data with an AutoEncoder by using AE’s ability
to abstract the main characteristics (features)
of the input data; then, based on these, setting
a DBN as the classifier for several times deep
learnings; finaly, improving the detection
accuracy and reducing the time complexity of the
hybrid model. Experiments employed the KDD
cup ‘99 dataset. Results showed that compared
with the detection method using single DBN, the
proposed method improves detection accuracy
while also reducing the time complexity of the
model. However, proposed method still needs
further improvements for better performance.

Saxe and Berlin, 2015 [66] introduced a malware
detector based on DNN using static features that
obtains a usable detection rate at an extremely
low false positive rate and scales to real world
training example volumes on un-expensive
hardware. Its performace approach traditional
labor-intensive signature based methods, while
also detecting previously unseen malware. These
were achieved by directly learning on all binaries,
without any filtering, unpacking, or manually
separating binary files into categories. The full
classification framework consists of three main
components. The first component extracts four
different types of complementary features from
the static benign and malicious binaries (Byte/
Entropy Histogram Features, PE Import Features,
String 2D histogram features; PE Metadata Features).
The second component is a DNN classifier, which
consists of an input layer, two hidden layers with
parametric ReLU activation function, and an output
layer with sigmoid activation function for prediction.
The final component is a score calibrator based
on a Bayesian calibration model, which translates
the output of the neural network to a score that
can be realistically interpreted as approximating
the probability that the file is actually malware.
A brief discussion is made to show how to prevent
overfitting by dropout, and how PReLU and weight
initialization with backpropagation method helps in
speeding up the learning process over the network.

Pascanu et al., 2015 [67] proposed an approach
similar to natural language modeling, that learns
the language of malware spoken through the
executed instructions and extracts robust, time

80 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

domain features through a random temporal
projection technique. Echo state networks
(ESNs) and RNNs are used for the projection
stage that extracts features. These models are
trained in an unsupervised manner. A standard
classifier uses these features to detect
malicious files. A few variants of ESNs and
RNNs were experimented for the projection
stage, including max-pooling and half-frame
models, as well as logistic regression for final
classification. The best performing hybrid
model improved the true positive rate by
98.3% compared to the standard tri-gram of
events model, at a false positive rate of 0.1%.

Huang and Stokes, 2016 [68] presented a
multi-task deep learning architecture for
malware classification for binary malware
classification task (malware vs. benign). All
models are trained with data extracted from
dynamic analysis of malicious and benign
files. They found improvements using multiple
layers in a DNN architecture for malware
classification. The system was trained on
4.5 mil. files and tested on a holdout test
set of 2 mil. files. Objective functions for
the binary classification task and malware
family classification task are combined in the
multi-task architecture. They also proposed a
non-multi-task malware family classification
architecture.

Rahul et al. [69], 2017 applied deep learning
techniques to classification of network
protocols and applications using flow features
and data signatures. They also presented a
similar classification of malware using their
binary files. CNN with ReLU and dropout, and
AE were employed with own dataset for traffic
identification, and Microsoft Kaggle dataset
for malware classification tasks. Deep learned
features in both cases are not handcrafted but
are automatically learned form data signatures.
They can’t be understood by an attacker or
malware, therefore can’t be easily bypassed.

Vinayakumar et al., 2017 [70], evaluated
shallow and deep networks for the detection
and classification of ransomware using API
calls made by executables. For selecting
best MLP architecture, various experiments

related to network parameters and structures
were done. Results obtained on their dataset
for binary classification of executables (as
either benign or ransomware) attained highest
accuracy 1.0, while for multiple classification
of ransomware in categories highest accuracy
obtained was 0.98. MLP performed better than
other classical ML classifiers in detecting and
classifying ransomwares.

Maniath et al., 2017 [71] applied deep learning
with LSTM networks for binary sequence
classification of API calls. An automated
approach to extract API calls from the log of
modified sandbox environment and detect
ransomware behavior was presented. This was
expected to improve the automated analysis of
large volume of malware samples.

As Android devices became very spreaded
in day by day use, malware detection on
Android platform gets nowadays of big interest.
Deep learning along with NLP appear very
appropriate for such tasks.

Zhenlong Yuan et al., 2016 [72] proposed to
associate the features from static analysis with
features from dynamic analysis of Android apps
and characterize malware using DL techniques
with DBN. They implemented an online DL-
based Android malware detection engine
(DroidDetector) that can automatically detect
whether an app is a malware or not. Also,
performed an indepth analysis on the features
that deep learning essentially exploits to
characterize malware. The results showed that
DL is suitable for characterizing Android malware
and especially effective with the availability of
more training data. DroidDetector can achieve
96.76% detection accuracy, which outperforms
traditional ML techniques.

Xiao et al., 2017 [73] considering some semantic
information in system call sequences as natural
language, treated one such sequence as a sentence
and constructed a classifier based on the LSTM
language model with effective number of hidden
layers to achieve better result. Two LSTM models are
trained using system call sequences from malware
and benign apps. At classification, two similarity
scores are computed, the greater one indicating
whether the analyzed app is malware or not.

81Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

Nix and Zhang, (2017) [74] focused on
classification of Android apps using system
API-call sequences and investigating the
effectiveness of DNNs for such purpose, based
on their ability to learn complex and flexible
features that may lead to timely and effective
detection of malware. They designed a CNN
for sequence classification and conducted a
set of experiments on malware detection and
categorization of software into functionality
groups, to test and compare it with classifications
by LSTM-RNN and other n-gram based methods.
Both CNN and LSTM significantly outperformed
n-gram based methods, and surprisingly, the
performance of CNN was also much better than
that of the LSTM.

SPAM AND PHISHING DETECTION
Spam email is referring unsolicited, undesired,

or illegal email messages massively broadcasted
to many email accounts. Phishing is a cyber-crime
technique consisting in a fraudulent attempt to
obtain sensitive information such as usernames,
passwords, bank accounts, credit card details etc.
by disguising as a trustworthy entity. These issues
can be treated by using deep learning techniques
with natural language processing (NLP).

Verma et al., 2018 [52], Anti-Phishing Pilot at ACM
IWSPA 2018, evaluated phishing techniques over
email using new metrics for unbalanced dataset.
Various techniques used for feature extraction
are discussed, such as: term frequency-inverse
document frequency (TF-IDF), non-negative
matrix factorization (NMF) and bag of words
etc. Algorithms as: random forest (RF), logistic
regression, k-nearest neighbor and multi-nominal
naive Bayes were mostly used, but also some deep
learning ones, using CNNs, RNNs, LSTMs.

Zhang and Yuan, 2012 [75] applied multi-layer
feedforward neural networks to phishing email
detection and evaluated the effectiveness
of this approach. They designed the feature
set, processed the phishing dataset, and
implemented the neural network (NN) systems,
then used cross validation to evaluate the
performance of NNs with different numbers
of hidden units and activation functions.
They also compared the performance of NNs

with other major ML algorithms. From the
statistical analysis, concluded that NNs with
an appropriate number of hidden units can
achieve satisfactory accuracy even when the
training examples are scarce. Moreover, their
feature selection is effective in capturing the
characteristics of phishing emails, as most ML
algorithms can yield reasonable results with it.

Lennan et al., 2016 [76] discussed about
the NLP feature extraction techniques using
methods such as character level embedding and
word embedding. A comparative study is made
among support vector machine (SVM) using
character level and CNN using both character
and word embedding techniques. CNN using
word embedding showed better results.

Vinayakumar et al., 2018 [77] showed a new
LSTM approach in which dataset is considered as
a hierarchical email architecture by considering
it as sentences and words. Bi-directional LSTM is
used for both cases which helps in computing the
weights and estimates the phishing probability
over the data during the network computation.

Shima et al., 2018 [78] used neural network
and DL for classification of URL strings used for
phishing sites. First, feature vectors from URL
strings are generated, that are then applied to
a linear NN with three layers, in a very light and
compact topology.

DETECTION AND CLASSIFICATION OF DOMAIN
NAMES GENERATED BY DGAS

Domain generation algorithms (DGAs) are
algorithms used by various families of malware
that are used to periodically generate a large
number of domain names that can be used as
rendez-vous points with their command and
control servers. This way, attackers are avoiding
the possibility of blacklisting “hardcoded”
domain names. Infected computers will attempt
to contact some of these domain names every
day to receive updates or commands.

Some research papers addressed the use of
deep learning for detecting malicious domain
names (2016-2018) [79], [80], [81], [82], [83], [84].
They showed that DL algorithms using CNNs,
RNNs and LSTM, performed well in comparison
to traditional ML algorithms (slow and poor in

82 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

performance) and, moreover, DL algorithms
remain robust in adversarial environments.

TRAFFIC ANALYSIS
Smit et al., 2017 [85] proposed using deep

learning techniques for network traffic
classification. This paper investigates the
viability of using deep learning for traffic
classification, with a focus on both network
management applications, and detecting
malicious traffic. Preliminary results showed
that a highly accurate classifier can be created
using the first 50 bytes of a traffic flow.

Wang, 2017 [86] proposed a method that is based
on ANN and DL. Results showed that approach
works very well on the applications of feature
learning, unknown protocol identification and
anomalous protocol detection.

Deep packet framework for automatically
extracting features from network traffic using a
DL method is proposed in [73]. These packets
help to handle sophisticated task like multi
challenging traffics etc.

BINARY ANALYSIS
Binary code analysis is an important

component in cyber security, which looks into
raw binary codes in search of vulnerability issues.
Static analysis can understand the pattern of
the software code to find possible weaknesses.
Nowadays, automated analysis method is
combined with DL method, which has surpassed
the pattern-based limitations [87]. Shin et
al., 2015 [88] showed that RNNs could identify
functions in binaries with greater accuracy and
efficiency (i.e. higher learning and recognition
speed) than other state-of-the-art traditional
ML-based method. To rectify gradient descent
over the hidden layers, optimization is done
with RMSprop method. Benchmarks for various
network architectures (RNN, bi-directional RNN,
LSTM and GRU) with 1 or 2 hidden layers of
various dimensions (8 or 16) are analyzed. Bi-
directional RNN proved to be the best.

Katz et al., 2018 [89] showed a novel technique for
decompiling binary code snippets using a model
based on RNNs. The model learns properties and
patterns that occur in source code, and uses them

to produce decompilation output.
Zheng Leong Chua et al., 2017 [90] presented a

new system, EKLAVYA, which helps in recovering
function type signatures from disassembled
binary codes using RNN network. Argument
recovery module on RNN is implemented
using techniques like saliency mapping and
sanitization. This system helps in learn calling
conventions and idioms with high-level accuracy
parameter.

Lee et al., 2017 [87] discussed DL of assembly
code, which helps to analyze the software
weakness. A CNN and a Text-CNN model are
trained using vectors created by Instruction2vec
and Word2vec from assembly code of existing
functions, and then new functions are classified
whether have software weakness (vulnerabilities)
or not. Text-CNN trained with vectors generated
by Instruction2vec provided higher accuracy in
classification.

CONCLUSION
Cyber security is dealing every day with

new kind of threats, more and more able to
dissimulate and change their code, patterns
and manifestations for avoiding IDSs.
The spectacular results obtained in the last
years by DL in various domains, together with
the ability of DNN models and architectures (i.e.
MLP, CNN, AE, RNN, LSTM etc.) in catching and
learning intimate structures of data without
any previous “manual” feature extraction or
engineering, and to automatically clusterize
data and/or make classification/prediction on
new data, make them to be very appropriate
and promising in most of the various use-cases
of cyber security applications, for building new
powerful and flexible intrusion detection systems
(both HIDS and NIDS). Deep learning is already a
prominent technique employed in several cyber
security areas. DL algorithms proved to provide
robust and effective solutions to solve various
problems with better results than “classical” ML
and other traditional methods. However, deep
learning may be used concurrently with other
automation techniques, like rule and heuristics
based ones and also other ML techniques.
Yet, artificial neural networks (ANNs) may be

83Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

attackers could somehow modify inputs to ANNs
in such a way that will lead to misclassification
of those inputs (adversarial attacks). [91]

also vulnerable to possible hacks and deception.
Thus, even if difficult, by identifying patterns
used by such systems in their functioning,

References
[1] Yuebin, B. & Kobayashi, H. (2003). Intrusion detection systems: technology and development. Proc. of IEEE 17th
International Conference on Advanced Information Networking and Applications, AINA 2003.
[2. *** - Wikipedia - Free Encyclopedia (DMZ). https://en.wikipedia.org/wiki/DMZ_(computing) (accessed 2019).
[3] Ozgur Depren; Murat Topallar; Emin Anarim & M. Kemal Ciliz. (2005). An intelligent intrusion detection system (IDS)
for anomaly and misuse detection in computer networks. Expert systems with Applications, 29(4), pp.713–722.
[4] *** - ML 4 Cyber Security website. https://www.helpnetsecurity.com/2017/01/31/machine-learning-cybersecurity/
(accessed 2019).
[5] Mohammed Harun Babu; Vinayakumar, R. & Soman, K.P. (2018). A short review on Applications of Deep learning
for Cyber security. arXiv:1812.06292.
[6] Karpathy, A. & Li, F.–F. (2015). Convolutional Neural Networks for Visual Recognition. Stanford CS Class (CS231n):
http://cs231n.github.io/convolutional-networks/ (accessed 2018).
[7] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.
Psychological Review 65: 386-408.
[8] McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics, Vol. 5(4), 115-133.
[9] Rosenblatt, F. (1962). Principles of neurodynamics; perceptrons and the theory of brain mechanisms. Washington
D.C., Spartan Books.
[10] Werbos, P. B. R. (1974). New Tools for Prediction and Analysis in the Behavioral Sciences. (PhD Thesis), Harvard
University.
[11] Rumelhart, D. E.; McClelland, J. L. & Group, P. R. (1987). Parallel distributed processing (Vol. 1, p. 184). Cambridge,
MA: MIT press.
[12] Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals,
and Systems, 2(4), 303-314. doi:10.1007/BF02551274
[13] Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 4(2), 251–257.
doi:10.1016/0893-6080(91)90009-T
[14] Hinton, G. E. & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science,
313(5786), 504–507.
[15] Hinton, G. E.; Osindero, S. & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation,
18, 1527–1554.
[16] Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards AI. Large Scale Kernel Machines.
[17] Martens, J. (2010). Deep learning via Hessian-free optimization. Proc. of the 27th International Conference on
Machine Learning, ICML-10, Haifa, Israel, Jun 21-24, 735-742.
[18] Ciresan, D. C.; Meier, U.; Gambardella, L. M. & Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten
digit recognition. Neural Computation, 22(12):3207–3220.
[19] Ciresan, D. C.; Meier, U.; Masci, J.; Gambardella, L. M. & Schmidhuber, J. (2011). Flexible, high performance
convolutional neural networks for image classification. Proc. International Joint Conference on Artificial Intelligence
- IJCAI’2011, 1237–1242.
[20] Hubel, D. H. & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J. Physiol.
148(3):574–91, Oct. doi:10.1113/jphysiol.1959.sp006308.
[21] Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202 (April).
[22] Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological Cybernetics, [20(3-4),
121-136 (Sept.)
[23] LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W. & Jackel, L. D. (1989). Backpropagation
applied to handwritten zip code recognition. Neural Computation, 1(4):541–551.
[24] LeCun, Z.; Bottou, L; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11):2278–2324. doi:10.1109/5.726791.
[25] Hahnloser, R.; Sarpeshkar, R.; Mahowald, M. A.; Douglas, R. J. & Seung, H. S. (2000). Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit. Nature. 405: 947–951. doi:10.1038/35016072.
[26] Hahnloser, R. & Seung, H.S. (2001). Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks. NIPS 2001.

84 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

[27] Glorot, X.; Bordes, A. & Bengio, Y. (2011). Deep sparse rectifier neural networks. Proc. of 14th International
Conference on Artificial Intelligence and Statistics – AISTATS 2011. JMLR Vol.15: PMLR 15: 315-323
[28] *** - ImageNet website, 2018: http://image-net.org/ (accessed 2018).
[29] Krizhevsky, A.; Sutskever, I. & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural
networks. In NIPS 2012, pp. 1106–1114.
[30] Zeiler, M. D. & Fergus, R. (2014). Visualizing and understanding convolutional networks. CoRR, abs/1311.2901,
2013. Published in Proc. ECCV 2014.
[31] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V. & Rabinovich, A. (2014).
Going deeper with convolutions. CoRR, abs/1409.4842.
[32] Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition, Proc. ICLR 2015.
[33] He, K.; Zhang, X.; Ren, S. & Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv:1512.03385.
[34] Huang, G.; Zhuang, L.; Van der Maaten, L. and Weinberger, K. Q. (2016). Densely Connected Convolutional Networks.
arXiv: 1608.06993, Aug.
[35] Hu, J.; Shen, L.; Albanie, S.; Sun, G. & Wu, E. (2017). Squeeze-and-Excitation Networks. arXiv: 1709.01507, Sep.
[36] Goodfellow, I.; Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press.
[37] Mehdi Mohammadi; Ala Al-Fuqaha; Sameh Sorour & Mohsen Guizani. (2017). Deep Learning for IoT Big Data and
Streaming Analytics: A Survey. arXiv:1712.04301v1.
[38] Werbos, .P. J. (1990). Backpropagation through time: what it does and how to do it, Proceedings of the IEEE 78.10,
pp.1550-1560.
[39] Oprea, Sergiu; Gil, Pablo; Mira Martínez, Damián & Alacid, Beatriz. (2017). Candidate Oil Spill Detection in SLAR
Data A Recurrent Neural Network-based Approach. In: 6th Int. Conf. on Pattern Recognition Applications and Methods
(ICPRAM ’17), DOI: 10.5220/0006187103720377.
[40] Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. In Neural computation 9(8), pp.1735-1780.
[41] Jihyun Kim; Jaehyun Kim; Huong Le Thi Thu & Howon Kim (2016). Long Short Term Memory Recurrent Neural
Network Classifier for Intrusion Detection. IEEE Proc. of 2016 International Conference on Platform Technology and
Service (PlatCon).
[42] Verma, R. (2018). Security analytics: Adapting data science for security challenges. In: Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics, ACM, pp. 40–41.
[43] *** - GitHub Repository of Cyber Security Datasets. https://github.com/jivoi/awesome-ml-for-cybersecurity#-
datasets (accessed 2019).
[44] *** - Mike Sconzo’s Security Data Repository. http://www.secrepo.com (accessed 2019).
[45] *** - Knowledge Discovery and Data Mining group - “KDD cup 1999” website page. http://www.kdd.org/kddcup/
index.php (accessed 2019).
[46] *** - KDD Cup 1999 Data website. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed 2019).
[47] *** - NSL-KDD dataset website page, https://www.unb.ca/cic/datasets/nsl.html (accessed 2019).
[48] *** - Creech, G. (2013). The ADFA Intrusion Detection Datasets website page. https://www.unsw.adfa.edu.au/
unsw-canberra-cyber/cybersecurity/ADFA-IDS-Datasets/ (accessed 2019).
[49] Creech, G. & Hu, J. (2013). Generation of a new IDS test dataset: Time to retire the KDD collection. Proc. of 2013
IEEE Wireless Communications and Networking Conference (WCNC), pp. 4487–4492, DOI: 10.1109/WCNC.2013.6555301.
[50] Creech, G. (2014). Developing a high-accuracy cross platform Host-Based Intrusion Detection System capable of
reliably detecting zero-day attacks. PhD Thesis, Engineering & Information Technology, UNSW Canberra, UNSW.
[51] *** - IWSPA 2018 Shared Task website page. https://dasavisha.github.io/IWSPA-sharedtask/ (accessed 2019).
[52] *** - IWSPA 2018 Anti-Phishing pilot website page. http://www2.cs.uh.edu/~rmverma/anti-phishing-pilot.pdf
(accessed 2019).
[53] *** - DMD 2018 website page. http://nlp.amrita.edu/DMD2018 (accessed 2019).
[54] *** - ICACCI 2018 website page. http://icacci-conference.org/2018/ (accessed 2019).
[55] *** - CDMC 2018 website page. http://www.csmining.org/cdmc2018/ (accessed 2019).
[56] Staudemeyer, R. C. & Omlin, C. W. (2013). Evaluating performance of long short-term memory recurrent neural
networks on intrusion detection data. In: Proc. of the South African Institute for Computer Scientists and Information
Technologists Conference, ACM, 2013, pp. 218–224.
[57] Javaid, Ahmad Y.; Niyaz, Quamar; Sun, Weqing & Alam, Mansoor. (2015). A Deep Learning Approach for Network
Intrusion Detection System. EAI Endorsed Transactions on Security and Safety. IEEE transaction 3. DOI: 10.4108/eai.3-
12-2015.2262516.
58] Kim, G.; Yi, H.; Lee, J.; Paek, Y. &, Yoon, S. (2016). LSTM-based system call language modeling and robust ensemble
method for designing host-based intrusion detection systems. arXiv:1611.01726.
[59] Vinayakumar, R.; Soman, K. & Poornachandran, P. (2017). Evaluating effectiveness of shallow and deep networks to

85Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

intrusion detection system. In: Advances in Computing, Communications and Informatics (ICACCI), 2017 International
Conference on, IEEE, pp. 1282–1289.
[60] Vinayakumar, R.; Soman, K. & Poornachandran, P. (2017). Applying convolutional neural network for network
intrusion detection. In: Advances in Computing, Communications and Informatics (ICACCI), 2017 International
Conference on, IEEE, pp. 1222–1228.
[61] Leila Mohammadpour; Teck Chaw Ling; Chee Sun Liew & Chun Yong Chong. (2018). A Convolutional Neural
Network for Network Intrusion Detection System. Proc. of the APAN – Research Workshop 2018, pp. 50–55, ISBN 978-
4-9905448-8-1.
[62] Shone, N.; Ngoc, T. N.; Phai, V. D. & Shi, Q. (2018) A deep learning approach to network intrusion detection. In: IEEE
Transactions on Emerging Topics in Computational Intelligence, 2(1), pp. 41–50.
[63] Rahul, V. K.; Vinayakumar, R.; Soman, K. P. & Poornachandran, P. (2018, July). Evaluating Shallow and Deep Neural
Networks for Network Intrusion Detection Systems in Cyber Security. In: 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT 2018), IEEE, pp. 1–6.
[64] Dahl, G. E.; Stokes, J. W.; Deng, L. & Yu, D. (2013). Large-scale malware classification using random projections
and neural networks. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on,
IEEE, pp. 3422–3426.
[65] Yuancheng Li; Rong Ma & Runhai Jiao. (2015). A Hybridybrid Malicious Code Detection Method based on Deep
Learning. In: International Journal of Security and Its Applications, 9(5), pp. 205-216, http://dx.doi.org/10.14257/
ijsia.2015.9.5.21.
[66] Saxe, J. & Berlin, K. (2015). Deep neural network based malware detection using two dimensional binary program
features. In: Malicious and Unwanted Software (MALWARE), 2015 10th International Conference on, IEEE, pp. 11–20.
[67] Pascanu, R.; Stokes, J. W.; Sanossian, H.; Marinescu, M. & Thomas. (2015). Malware classification with recurrent
networks. In: Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, IEEE, pp.
1916–1920.
[68] Huang, W. & J. W. Stokes. (2016). MtNet: a multi-task neural network for dynamic malware classification. In: International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer, pp. 399–418.
[69] R. Rahul; T. Anjali; V. K. Menon & K. Soman. (2017). Deep learning for network flow analysis and malware classification.
In: International Symposium on Security in Computing and Communication (ISSCC) 2017, Springer, pp. 226–235.
[70] R. Vinayakumar; K. Soman; K. S. Velan & S. Ganorkar. (2017). Evaluating shallow and deep networks for ransomware
detection and classification. In: Advances in Computing, Communications and Informatics (ICACCI), 2017 International
Conference on, IEEE, pp. 259–265.
[71] S. Maniath; A. Ashok; P. Poornachandran; V. Sujadevi; A. P. Sankar & S. Jan. (2017). Deep learning LSTM based
ransomware detection. In: Control, Automation & Power Engineering (RDCAPE), 2017 Recent Developments in, IEEE,
pp. 442–446.
[72] Yuan, Z.; Lu, Y. & Xue, Y. (2016). Droid detector: android malware characterization and detection using deep
learning, Tsinghua Science and Technology, 21(1), 114–123.
[73] X. Xiao; S. Zhang; F. Mercaldo; G. Hu & A. K. Sangaiah. (2017). Android malware detection based on system call
sequences and LSTM. In Multimedia Tools and Applications, pp. 1–21.
[74] R. Nix & J. Zhang. (2017). Classification of android apps and malware using deep neural networks. In: Neural
Networks (IJCNN), 2017 International Joint Conference on, IEEE, pp. 1871–1878.
[75] N. Zhang & Y. Yuan. (2012). Phishing detection using neural network. CS229 lecture notes, http://cs229.stanford.
edu/proj2012/ZhangYuan-PhishingDetectionUsingNeuralNetwork.pdf.
[76] C. Lennan; B. Naber; J. Reher & L. Weber. (2016). End-to-end spam classification with neural networks. Project
report for Machine Learning 1, SS 2016, Prof. Marius Kloft, Humboldt-University Berlin, Germany. URL https://amor.
cms.hu-berlin.de/~jaehnicp/project/spam-filter/cnn_report.pdf (accessed 2019).
[77] R. Vinayakumar; K. Soman & P. Poornachandran. (2018). Evaluating deep learning approaches to characterize
and classify malicious URL’s, Journal of Intelligent & Fuzzy Systems 34 (3), pp. 1333–1343.
[78] K. Shima; D. Miyamoto; H. Abe; T. Ishihara; K. Okada; Y. Sekiya; H. Asai & Y. Doi. (2018). Classification of URL
bitstreams using bag of bytes. IEEE 21st Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN) 2018. DOI: 10.1109/ICIN.2018.8401597.
[79] J. Woodbridge; H. S. Anderson; A. Ahuja & D. Grant. (2016). Predicting domain generation algorithms with long
short-term memory networks. arXiv:1611.00791.
[80] B. Yu; D. L. Gray; J. Pan; M. De Cock & A. C. Nascimento. (2017). Inline DGA detection with deep networks. In: 2017
IEEE International Conference on Data Mining Workshops (ICDMW), IEEE, pp. 683–692.
[81] F. Zeng; S. Chang & X. Wan. (2017). Classification for DGA-based malicious domain names with deep learning
architectures. International Journal of Intelligent Information Systems, 6(6), 67.

86 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

[82] P. Lison & V. Mavroeidis. (2017). Automatic detection of malware generated domains with recurrent neural models.
arXiv:1709.07102.
[83] B. Athiwaratkun & J. W. Stokes. (2017). Malware classification with LSTM and GRU language models and a
character-level CNN, in: Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on,
IEEE, pp. 2482–2486.
[84] B. Yu; J. Pan; J. Hu; A. Nascimento & M. De Cock. (2018). Character level based detection of DGA domain names.
2018 International Joint Conference on Neural Networks (IJCNN), DOI: 10.1109/IJCNN.2018.8489147
[85] D. Smit; K. Millar; C. Page; A. Cheng; H.-G. Chew & C.-C. Lim. (2017). Looking deeper: Using deep learning to identify
internet communications traffic, Macquarie Matrix: Special edition, ACUR 1 (2017) 1318–1323.
[86] Z. Wang (2015). The applications of deep learning on traffic identification, BlackHat USA, https://www.blackhat.
com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf
(accessed 2019).
[87] Y. J. Lee; S.-H. Choi; C. Kim; S.-H. Lim & K.-W. Park. (2017). Learning binary code with deep learning to detect
software weakness. KSII The 9th International Conference on Internet (ICONI) 2017 Symposium, pp. 245–249.
[88] E. C. R. Shin; D. Song & R. Moazzezi. (2015). Recognizing functions in binaries with neural networks. In: USENIX
Security Symposium 2015, pp. 611–626.
[89] D. S. Katz; J. Ruchti & E. Schulte. (2018). Using recurrent neural networks for decompilation. In: Proc. of IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 346–356.
[90] Z. L. Chua; S. Shen; P. Saxena & Z. Liang. (2017). Neural nets can learn function type signatures from binaries. In:
Proc. of the 26th USENIX Security Symposium, USENIX Security Vol. 17.
[91] *** - Wikipedia - Free Encyclopedia (DL). https://en.wikipedia.org/wiki/Deep_learning (accessed 2019).

