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Neural Networks and Deep 
Learning in Cyber Security

INTRODUCTION
In nowadays, large scale digitalization and 

informatics globalization with worldwide 
Internet connectivity and huge amounts of 
various data generated, transmitted, stored and 
retrieved with high pace (Big Data), augmented 
our reality with new dimensions in almost 
all the fields and at all levels: governmental, 
military and security, medical, financial and 
economic, social, cultural, educational etc.  
The number of individuals accessing the 
information online is increasing daily, but also 
the cyber threats are inherently increasing. Cyber 
events are inevitable and their impact could be 
more disastrous than one could even imagine.

Cyber security refers to data and devices protection 
against various cyber threats. It comprises a set of 
methods, technologies, and processes designed 
to prevent, avoid or at least minimize the risks 
and damages that may arise from possible 
attacks against informatics systems and networks, 

unauthorized access, data theft, modification or 
destruction. Cyber security involves both network 
security and host security systems, every of those 
having today a firewall, and/or antivirus (AV) 
software, providing an intrusion detection system 
(IDS). A host-based IDS (HIDS) is using the host 
system event log for watching over the system 
operation and states to detect unauthorized 
installation or access, while also checking the state 
of RAM and file system whether some expected 
data exist there or not [1]. A network-based IDS 
(NIDS) is placed on “demilitarized zone” (DMZ) [2] 
at the edge of the network. It analyses network 
traffic in real-time for detecting unauthorized 
intrusions or malicious attacks. There are two 
types of detection techniques: anomaly detection, 
that catches attacks by comparing behaviors 
for identifying abnormal vs. normal ones, and 
misuse (or signature-based) detection, that 
detects the attacks based on previously known  
knowledge [3].
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Cyber threats represent one of the greatest and 
permanent dangers for global economies today, 
being expected that the total costs of the cyber 
crime damages will reach almost one trillion 
dollars this year [4]. On the other hand, in the last 
years, the deep learning (DL) technology based on 
learning data representations (as opposed to task-
specific algorithms) using various deep neural 
network (DNN) types / models / architectures 
became the state-of-the-art in Machine Learning 
(ML) and Artificial Intelligence (AI), its applications 
exceeding human performance in more and 
more domains. In these circumstances, the cyber 
security industry is currently investing heavily in 
ML in hope of providing a more dynamic deterrent 
to cyber crime. ABI Research forecasted that ML 
in cyber security will boost big data, intelligence, 
and analytics spending up to 96 billion dollars 
by 2021 [4]. It is considered that “this AI security 
revolution will drive ML solutions to soon emerge 
as the new norm beyond Security Information and 
Event Management (SIEM), and ultimately displace 
a large portion of traditional AV, heuristics, and 
signature-based systems within the next five 
years”. User and Entity Behavioral Analytics (UEBA) 
along with DL algorithms design are emerging 
as the two most prominent technologies in 
cyber security. More and more feature-agnostic 
models, deep learning, and natural language 
processing will be employed as a response to the 
increasingly menacing nature of unknown threats 
and multiplicity of threat agents.

This paper presents a brief overview of artificial 

neural networks (ANN) and of some examples 
for possibilities of using DL techniques in cyber 
security applications, while also highlighting 
the advantages of DL algorithms in classifying 
and correlating malicious activities from 
various sources. Unlike other ML approaches, 
DL algorithms don’t need any previous “hand-
crafted” feature extraction / engineering, 
and also provide feature visualizations.  
They are automatically extracting best options 
by themselves [5]. Data to be analyzed in cyber 
security is mostly in the form of strings / texts, 
as well as binary executable code. To convert 
strings / texts to real valued vectors, various 
preprocessing and analysis techniques are 
employed along with deep learning.

The rest of this paper is organized as follows. 
Section 2 provides a brief historical overview 
of various models of artificial neural networks 
(ANN) as base architectures for deep learning. In 
Section 3, some DL based solutions for several 
cyber security use cases are presented. Finally, 
Section 4 is gathering a few conclusions.

ARTIFICIAL NEURAL NETWORKS AND 
DEEP LEARNING

An artificial neuron is modeling in a simplified 
way, through a mathematical function, a real 
neuron from a biological neural network such 
as the brain. The artificial neuron represents the 
elementary unit of an artificial neural network.

Like the biological neuron, which has dendrites 
and an axon, the artificial neuron has a simple 

Figure 1. Artificial neuron is modeling in a simplified 
manner the biological neuron. (Source: Karpathy, 2015 [6])
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tree structure with input nodes and an output 
node connected to all these ones. The artificial 
neuron gets several input values analogues to the 
post-synaptic excitation/inhibiting potentials 
applied to the dendrites of the biological neuron. 
These input values are summed producing an 
output activation value, analogue to the action 
potential transmitted along the axon in the case 
of the biological neuron. Each input value xi is 
individually weighted in the sum (with a weight 
wi) and the result is passed to the output through 
a non-linear function (f) called activation (or 
transfer) function.

The simplest artificial neural network is the 
“perceptron”, composed by a single artificial 
neuron. It was introduced by Frank Rosenblatt 
(1958) [7], based on research of Warren 
McCulloch and Walter Pitts (1943) [8]. The 
perceptron computes the weighted sum of its n 
input values xi:

y = w•x+b = Σwi•xi + b;     i = 1÷n                      (1)
and then applies a non-linear function (i.e. 
signum function) to the resulted value:

                      –1,  for y < 0;
f(y) = |y| / y =       0,  for y = 0;                         (2)
                       +1,  for y > 0.
The bias b (offset), represents the activation 

threshold value of the perceptron and may be 
considered as a (n+1) supplementary input, with 
value x0 = 1 and weight w0 = b, both constants, 
allowing to shift the activation function to the left 
or right as necessary along the training process.

The perceptron is a linear classifier that can 
perform binary classification (in two classes, 
e.g. coded by numerical values, e.g. 0 and 1) 
in the case of linearly separable data applied 
at input, by separating the output values 
greater or lesser than a certain threshold.  
These later one together with the weights must 
be empirically set up in a configuration phase for 
each classification problem in the absence of a 
training algorithm. Rosenblatt, 1962 [9] proposed 
an iterative training algorithm for setting up the 
weights of the perceptron. The algorithm starts 
with a set of randomly chosen, non zero, small 
weights, and compares at each iteration the 
output obtained for each input vector with the 
real/correct class (code) to which the respective 

input vector belongs, adjusting the weights 
thus that to eliminate any classification error. 
If at the end of an iteration (after a number 
of steps equal to the number of training input 
vectors) no weight adjustment has been made, 
it means that all the respective training vectors 
have been correctly classified. The obtained 
weights vector represents a solution of the 
respective training problem and the algorithm 
stops. Otherwise, a new iteration starts. In the 
case that within an empirically preset maximum 
number of iterations nmax not all the training  
vectors succeeded to be correctly classified, 
it means that the two classes are not linearly 
separable and the algorithm is stopped, 
the problem couldn’t being solved with the 
perceptron. Rosenblatt, 1962 [9] also formulated 
and demonstrated the „perceptron convergence 
theorem”: For a training set composed by two 
subsets of vectors corresponding to two linearly 
separable classes, the training algorithm will 
converge after a finite number of iterations n, 
resulting a weights vector w(n) = w(n+k),   Vk>0, 
as (not necessarily unique) solution of the 
training problem.

The perceptron has multiple limitations, 
among which the most known is that it can’t 
model the binary logical function XOR, whose 
values 0 and 1 for all possible combinations 
of the binary input variables are not linearly 
separable. Such limitations were overpassed 
once the multilayer perceptron (MLP) model 
was developed. The MLP is structured as a 
sequence of connected layers of perceptrons, 
with an input layer that receives an input vector 
of values, an output layer that makes a decision 
or prediction on the input, and - in between 
these two - one or several hidden layers, 
whose component perceptrons are effectively 
performing the MLP computations. Layers are 
completely connected, each perceptron in a 
layer being connected to all the perceptrons 
of the previous thus fully connected (FC) layer. 
Each connection has its own weight. The output 
of each layer represents the input for the next 
layer in the sequence.

In the case of the MLP architectures with two 
or more hidden layers one can already speak 
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about a “deep neural network” (DNN), while for 
only one hidden layer, usually about a “shallow 
neural network” (which is often used mainly for 
the single perceptron).

The MLP is a “feedforward” network, since its 
connections are followed from input to output, 
layer by layer, exclusively forward, and the output 
values resulted in a higher level don’t affect in 
any way the output values of previous layers. 
While in the case of single perceptron the input is 
used to immediately compute the output, in the 
case of feedforward MLP the data is sequentially 
processed for each layer, one by one.

Also, MLP uses another kind of activation 
function, derivable (whose result doesn’t jump 
instantly from negative to positive values, 
but has a smooth continuous passage), that 
allow training. Usually, sigmoid functions are 
employed, such as logistic function:

f(x) = 1/(1+e-x),                     (3)
or hyperbolic tangent:
f(x)=tanh(x)=(ex–e-x)/(ex+e-x).                        (4)
The MLP feedforward network can classify 

input data in a preset number of classes equal to 
the dimension of the output. The input vectors 
must contain specific values coding the relevant 
features for identifying and discriminating among 
data classes. It is therefore necessary that those 
features be previously extracted (identified) for 
each category of classification problem. Feature 
extraction is usually a nontrivial task, requiring 
domain knowledge and expertise.

The values of all the weights for all the 
connections are set up by supervised training 

using a set of labeled input vectors (belonging to 
all possible classes, identified by the respective 
label value each). The most used supervised 
training method is “backpropagation”, and was 
initially proposed by Paul Werbos, 1974 [10].  
The training algorithm is based on the 
propagation of the classification error backwards 
from final layer to previous ones, layer by layer, 
and is adjusting the weights of the connections 
for minimizing that error. David Rumelhart et 
al., 1986 [11] „rediscovered” and successfully 
applied the backpropagation algorithm for 
training multi-layer networks through parallel 
distributed processing. The method consists 
in a continuous iterative process of supervised 
learning by adjusting and fine-tuning network 
structure (i.e. the values of the weights of its 
connections, initialized first with random small 
values) at each iteration step. It’s an iterative 
optimization process that is reducing iteration 
by iteration the error (i.e. the difference between 
the expected and obtained output, estimated 
using a cost / loss function). The most used 
optimization algorithm for weights adjustment 
is “gradient descent”, with its variants, based 
on which it is decided at each iteration which 
weights are to be adjusted by following the 
descent gradient of the error (as a function of 
weights). By measure that the error is reduced, 
iterations become more refined. The process 
could take thousands of iterations until the 
computed output closes enough to the expected 
one, moment when it may be considered that 
the network is completely trained.

Figure 2. 
MLP / DNN 
fully connected 
feedforward 
general 
architecture.
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A trained MLP establishes (through the values 
of the weights) links between the training input 
vectors and the output values corresponding 
to these ones, somehow like when defining a 
function through a table of its values. In this 
context, it was formulated and demonstrated 
the “universal approximation theorem” (George 
Cybenko, 1989 [12]; Kurt Hornik, 1991 [13]), stating 
that a feedforward MLP network with (only) one 
hidden layer and a finite number of neurons 
can model (as polynomial approximation) any 
function that is continuous on compact subsets 
of Rn of any complexity with enough precision, 
provided that there are enough neurons in 
the hidden layer and appropriate activation 
functions are used.

Even if with the supervised training algorithm 
using backpropagation and gradient descent, 
MLP networks meant a big step forward, in 
the case of more hidden layers, they still have 
serious limitations. These are due to the sigmoid 
activation function, which leads to a quick 
saturation at multiple derivations from layer 
to layer backwards, the so-called “vanishing 
gradient”, thus that weights of initial layers 
couldn’t be correctly set up. In 2006 Geoffrey 
Hinton [14],[15] proposes some revolutionary 
ideas of initializing the parameters of the neural 
network with values closer to the optimal ones 
by using Restricted Boltzmann Machine (RBM) 
units / Deep Belief Network (DBN). The method 
consist in an initial unsupervised pre-training 
of the RBM network layer by layer thus that the 
weights get to model the intimate structure of 
the training input data. Those weights are then 
fine-tuned using supervised backpropagation, 
thus eliminating the vanishing gradient 
problem. In 2007, Yoshua Bengio [16] introduced 
autoencoders (AE) instead of RBM for the 
unsupervised pre-training of the network, 
which have been further developed with some 
variation (denoising AE, sparse AE etc.). In 2010, 
James Martens [17] presented another algorithm 
for setting up the parameters using second 
order derivates without any prior unsupervised 
pre-training, which got even better results. 
Moreover, the same year, by directly using the 
classical backpropagation algorithm with a deep 

and wide network, on GPUs, by using for training 
slightly elastically deformed patches from 
images, without any other helping algorithm for 
initializing the weights, Dan Cireșan [18] obtained 
0.35% error rate on the MNIST image set.  
The same group, this time using convolutional 
neural network (CNN) and max pooling [19] 
without any other prior pre-training, established 
in 2011 the record on MNIST, of 0.23% error rate, 
a better than human performance.

Thus, in the last years artificial neural networks 
had known an impressive development, 
sustained (also) by the technological evolution 
in what concerns the storage and computing 
capacities and speed using GPUs, and the 
data acquisition devices, as well as by the 
large amounts of data of all kinds that became 
available (Big Data), able to provide enough 
information about the complexity and variety of 
the real world. New deep neural network (DNN) 
models and architectures have been developed, 
either inspired from neurosciences, either based 
on computational engineering reasons, deep 
learning technology becoming today almost 
synonym with ML and AI.

Convolutional neural networks (CNNs or 
ConvNets) are inspired by the mechanisms within 
the visual cortex of the brain (Hubel & Wiesel, 
1959 [20]). The neurons from a convolutional 
layer are connected not with all the neurons 
from the previous layer as in the MLP, but rather 
with only a few of them, located in a small 
vicinity (receptive field). This way they are able 
to become sensitive to certain local features, 
also providing invariance to shifting position of 
those features. When stacked together, higher 
convolutional layers integrate simple features 
from previous layer(s) into more complex ones. 
The output of each convolutional layer provides 
a feature map (activation map). The weights of 
each neuron’s input connections in a (slice of 
a) convolutional layer are the same (shared), 
defining the specific “filter” for a certain 
feature in whatever position in the previous 
layer’s feature map. In fact, a convolutional 
layer is composed of more than one “slices”, 
each corresponding to a certain feature (filter). 
A first model of convolutional networks was the 
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Neocognitron proposed by Kunihiko Fukushima, 
1980 [21], (after he introduced the Cognitron 
[22] in 1975). The first successful application 
of CNN dated from the 90’s and is represented 
by LeNet-5 architecture (Yann LeCun, 1989; 
1998 [23],[24]) that was largely employed for 
recognizing hand-written digits on checks and 
other paper forms in the banking environment.

In general, a CNN is composed by a sequence 
of two parts. The first one alternates several 
(or more) convolutional layers having local 
connectivity (receptive fields) with some down-
sampling ones (max pooling / average pooling) 
that reduce the spatial dimensions, also having 
local connectivity. This initial convolutional 
part is performing automatic feature extraction 
from the input data. The most used activation 
function for the convolutional layers is the 
Rectified Linear Unit - ReLU (Hahnloser, 2000; 
2001 [25],[26]; Nair, 2010 [27]; Glorot, 2011 [27]):

f(x)=max(0,x).                   (5)
The final part of such a deep neural network 

consists in one or more fully connected 
layers (a MLP classifier), which perform(s) the 
classification using as input the output of the 
initial convolutional part (i.e. a feature vector 
automatically generated by that one).

Significant improvements and innovations on 
CNN models/architectures and training methods 
emerged in the context of the ImageNet Large 
Scale Visual Recognition Challenge - ILSVRC 
annual competitions (2010-2017) based on the 
ImageNet image set [28], including:

•   AlexNet [29] (2012), with 8 layers which provided 
a 15,4% error rate in image classification;

• ZFNet [30] (2013), also with 8 layers but with 
11,2% error rate;

• GoogLeNet/Inception-v1 [32] and VGGNet 

[32] (2014), with 22, respectively 16-19 layers and 
6,7%, respectively 7,3% error rate.

• ResNet [33] (2015) with 152 layers and 3,57% 
error rate (better than human performance of 
about 5%).

• DenseNet [34] (2016) and SENet [35] (2017), 
with over 200 layers and 2,99%, respectively 
2,251% error rate.

CNNs are widely used today mainly in 
the Computer Vision (CV) field for image 
classification, image segmentation, object/
face/pattern recognition, scene labeling, 
human pose recognition, action recognition or 
document analysis, as well as in the Natural 
Language Processing (NLP) field, for speech 
recognition or text classification.

The number of training samples is very 
important in the case of deep neural networks 
(DNN). It is considered that a supervised DL 
algorithm will perform acceptably if trained 
with about 5,000 examples per class, and will 
surpass human performance if the training set 
contains at least 10 mil. labeled examples (Ian 
Goodfellow et al., 2016 [36]). For having similar 
success with smaller labeled training sets, 
researches are done today for valorizing huge 
amounts of unlabeled data with unsupervised 
or semi-supervised training methods.

Other state-of-the-art DNN models / architectures 
successfully employed today include: Autoencoders 
(AE), Recurrent Neural Networks (RNN), and Long 
Short Term Memory (LSTM).

An AutoEncoder (AE) is a type of artificial neural 
network used to learn efficiently compressed / 
coded data representations in an unsupervised 
manner for dimensionality reduction, by 
training the network to ignore signal “noise”.  
A reconstructing part is simultaneously trained 

Figure 3. 
LeNet-5 
architecture. 
(LeCun, 1998 
[24]
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for generating / reconstructing from the reduced 
encoding (named code or latent representation) 
an output as close as possible to its original 
input. In its simplest form, an AE architecture 
is a feedforward neural network similar to the 
multi-layer perceptron (MLP), having an input 
layer, an output layer and one or more hidden 
layers connecting them, with input and output 
layers having the same dimension, and hidden 
code layer (but not necessarily all other hidden 
layers) of lower dimension.

If trained with normal / regular good data, 
AE may be used for anomaly detection in 

further data, since anomalies in input 
will produce significantly different output 
than respective input. An autoencoder 
is a dense neural network and each 
variable influences the output of the 
other variables, therefore in case of some 
abnormal values at input it will produce a 
large reconstruction error thus capturing 
irregularities. On the other hand, the 
encoding part of a trained autoencoder 
is actually performing automatic feature 
extraction and the latent representation (as 
a feature vector) may be further used as input 
by a classifier if label for the corresponding AE 
input is available. There are several variations 
of autoencoders: Sparse, Denoising, Variational, 
Contractive, Generative AE.

Recurrent neural networks (RNNs) are a class 

of artificial neural network where connections 
between nodes form a directed graph along a 
temporal sequence, which allows them to exhibit 
temporal dynamic behavior. Unlike feedforward 
neural networks, RNNs have cyclic connections 
and are using their internal state (memory), 
which make them powerful for modeling input 
sequences (of various length). This makes 
them applicable to tasks such as unsegmented, 
connected handwriting recognition or speech 
recognition. For learning variable-length input 
sequences, back propagation through time 
(BPTT) [38] is used. In BPTT, the model is first 
trained with the training data, then the output 
error gradient is saved for each time step.

A RNN uses an input vector sequence X=(x1, 
x2, ..., xT ) and a hidden vector sequence H=(h1, 
h2, ..., hT) to produce an output vector sequence 
Y=(y1, y2, ..., yT). A traditional RNN calculates 
the hidden and output vectors sequences as 
follows:

ht= σ(Wx•hxt+Whh•ht−1+bh),                    (6)
yt= Why•ht+by,                                                  (7)

where t=1÷T, σ is a nonlinearity function, W is 
a weight matrix, and b is a bias. A finite impulse 
recurrent network is a directed acyclic graph 
that can be unrolled / unfolded and replaced 
with a feedforward neural network (while an 
infinite impulse recurrent network is a directed 
cyclic graph that can not be unrolled).

RNNs raises vanishing gradient problems in 
handling long term dependencies, and are very 
difficult to train when the number of parameters 
is extremely large. The unfolded network 
becomes huge, posing convergence problems.

These issues can be avoided by RNNs with 
additional stored state, and storage under direct 
control by the neural network. The storage can 

Figure 4. General architecture of an autoencoder 
network (Source: [37])

Figure 5. Unfolding a recurrent neural network (Source: [39])
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also be replaced by another network or graph, 
if that incorporates time delays or has feedback 
loops. Such controlled states are referred to 
as gated state or gated memory, and used by 
Long Short-Term Memory networks (LSTMs) and 
Gated Recurrent units (GRUs).

Long Short-Term Memory networks (LSTMs), 
introduced by Hochreiter & Schmidhuber [40], 
are a special kind of RNNs, which provide the 
capability to learn long-term dependencies in 
sequences of data. In LSTM-RNNs, the repeating 
module in the chain like structure has a slightly 
different structure. Instead of having a single 
neural network layer, there are multiple layers, 
interacting in a very special way. A LSTM cell has 
an input gate, a forget gate and an output gate. 
Equations to compute the values of the three 
gates and cell state:

it=σ(Wxi•xt+Whi•ht−1+Wci•ct−1+bi),             (8)
ft=σ(Wxf•xt+Whf•ht−1+Wcf•ct−1+bf),             (9)
ct=ft•ct−1+ic•tanh(Wxc•xt+Whc•ht−1+bc),       (10)
ot=σ(Wxo•xt+Who•ht−1+Wco•ct+bo),            (11)
ht=ot•tanh(ct),                                               (12)

where: σ is the logistic sigmoid function, and i, 
f, o and c are respectively the input gate, forget 
gate, output gate and cell state, and Wci, Wcf and 
Wco are denoted weight matrices for peephole 
connections. In LSTM, three gates (i, f, o) control 
the information flow. The input gate decides 
the ratio of input. When calculating the cell 
state, this ratio has effect on the equation (10). 
The forget gate passes the previous memory 
ht−1 or not. The ratio of the previous memory 
is calculated in the equation (9) and used for 
the equation (10). The output gate determines 
whether passing the output of memory cell 
or not. The equation (12) shows this process. 
LSTMs can solve the vanishing and exploding 

gradient problems due to the three gates. In 
LSTM-RNN architecture, the recurrent hidden 
layer is replaced by LSTM cell.

LSTMs proved to work extremely well on a large 
variety of problems, being now widely used in 
speech recognition, text-to-speech synthesis, 
and automatic image captioning.

Another efficient RNN architectures are the 
Gated Recurrent Units (GRUs), a variant of 
LSTMs, but simpler in their structure and easier 
to train. Their success is primarily due to the 
gating network signals that control how the 
present input and previous memory are used to 
update the current activation and produce the 
current state. There are (only) two gates: reset 
and update. These gates have their own sets 
of weights that are adaptively updated in the 
learning phase.

APPLICATIONS IN CYBER SECURITY

REFERENCE DATASETS
No deep learning algorithm can be thought 

of without having a comprehensive, problem 
specific labeled dataset available for supervised 
or semi-supervised learning, validation and 
test of the models. There are several publicly 
available datasets used as benchmarks for 
developing and testing systems for various 
cyber security use cases, but most of them are 
quite old, and each of those has own limitations. 
Verma, 2018 [42] presented a brief study over 
the needs of Security domain to overcome 
such issues, and datasets and key features of 
data science for problems of cyber security 
are discussed. A GitHub repository with a list 
of cyber security datasets links, among other 
interesting stuff, may be found at [43]. Also, in 

his quite comprehensive repository 
[44], Mike Sconzo attempts to keep 
“a somewhat curated list of Security 
related data”. Links to various 
datasets (among other own and 3rd 
parties stuff) may be found there, 
organized on topics like: Network, 
Malware, System, File, Password, 
Threat Feeds, Other.

Some example datasets among the Figure 6. A LSTM network cell. (Source: [41])
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most employed ones include by example:
• The KDD Cup 1999 Data [45],[46], which is the 

dataset used for the 3rd International Knowledge 
Discovery and Data Mining Tools Competition, 
held in conjunction with the 5th International 
Conference on Knowledge Discovery and Data 
Mining – KDD-99. The competition task was 
to build a network intrusion detector (NID), 
a predictive model capable of distinguishing 
between “bad’’ connections, called intrusions 
or attacks, and “good’’ normal connections. The 
KDD Cup ‘99 database contains a standard set 
of data to be audited, which includes a wide 
variety of intrusions simulated in a military 
network environment.

• The NSL-KDD dataset [47] which is an 
improved version of the KDDcup99 one, 
eliminating this one’s main deficiencies due to 
the huge number of redundant records, which 
causes the learning algorithms to be biased 
towards the frequent records, and thus prevent 
them from learning unfrequent records which 
are usually more harmful to networks, such as 
U2R and R2L attacks. In addition, the existence 
of these repeated records in the test set caused 
the evaluation results to be biased by the 
methods which have better detection rates on 
the frequent records.

• The ADFA Intrusion Detection Datasets 
(2013) [48],[49],[50], which cover both Linux 
and Windows, and were designed at Australian 
Defense Force Academy for evaluation by system 
call based HIDS.

In recent days, for boosting up the systems 
performance and for offering a standard 
benchmark for their evaluation, some “shared 
task” is organized as part of the conferences 
and symposiums. In such shared task, initially 
a train dataset is distributed to the participants 
and their learning models are evaluated on a 
test dataset. Recently, IWSPA 2018 [51] organized 
a shared task on identifying phishing email, 
details of the submitted runs being available in 
[52], and a shared task on detecting malicious 
domain (DMD 2018) [53], organized as part of 
the 6th International Symposium on Security 
in Computing and Communications (SSCC 
2018) and 7th International Conference on 

Advances in Computing, Communications and 
Informatics (ICACCI 2018) [54]. These two shared 
tasks allowed participants to present their 
approaches through working notes or systems 
description papers. Yearly there is also a shared 
task conducted by the Cybersecurity Data Mining 
Competition (CDMC), providing also an option to 
submit system description papers starting with 
CDMC 2018 [55].

INTRUSION DETECTION
An intrusion detection system (IDS) is a 

device or software application that monitors 
a network or system for malicious activity or 
policy violations, reporting those either to 
an administrator or to a security information 
and event management (SIEM) system able to 
combine multiple sources and filter false alarms. 
There are network intrusion detection systems 
(NIDS) and host-based intrusion detection 
systems (HIDS). IDS are either using misuse 
detection (signature-based), recognizing bad 
patterns, such as malware, or anomaly-based 
detection, detecting deviations from a pattern 
of normal/good traffic, which often relies on 
machine learning. Some IDS products have the 
ability to also respond to detected intrusions, 
being referred as intrusion prevention systems 
(IPS).

Staudemeyer and Omlin, 2013 [56] evaluated 
the performance of LSTM-RNN on classifying 
intrusion detection data, LSTM networks being 
able to model data as time series. A processed 
version of the KDD Cup ‘99 dataset was used for 
training and test. Some suitable performance 
measures are used. LSTM network structure and 
parameters are experimentally set up. Results 
showed that LSTM is able to learn all attack 
classes hidden in the training data.

Javaid et al., 2015 [57] proposed a deep learning 
based approach to implement an effective and 
flexible NIDS using self-taught learning (STL) on 
the NSL-KDD dataset, showing that such NIDS 
are promising in detecting unknown network 
intrusions.

J. Kim et al., 2016 [41] implemented an IDS model 
with deep learning approach, using a classifier 
based on LSTM-RNN, and evaluated the model. 
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A training dataset was generated by extracting 
instances from KDD Cup ‘99 dataset. Learning rate 
and hidden layer size were experimentaly chosen. 
10 test datasets were used for measuring the 
performance. The LSTM-RNN classifier showed 
higher detection ratio than other classifiers.  
Still, false alarm ratio was slightly greater.

G. Kim et al., 2016 [58] proposed a system-
call language modeling approach for designing 
anomaly-based HIDS. An ensemble method 
blending multiple threshold based classifiers into 
a single one, making it possible to accumulate 
“highly normal” sequences was employed, which 
significantly reduces false-alarm rates common 
to conventional methods. System calls represent 
low-level interactions between programs and 
the OS kernel and are easy to collect in a large 
quantity in real-time. Many researchers consider 
system-call traces as the most accurate source 
useful for detecting intrusion in anomaly-based 
HIDS. The proposed system-call language model 
can learn the semantic meaning and interactions 
of each system call. The method consists of two 
parts: the front-end is for language modeling of 
system calls in various settings, and the back-
end is for anomaly prediction based on an 
ensemble of threshold based classifiers derived 
from the front-end. The front-end uses LSTM on 
hidden layer, while at the output layer, a softmax 
activation function is used to estimate normalized 
probability values of possible calls coming next 
in the sequence. The sequence representation 
learned from the final state vector of the LSTM 
layer after feeding all the sequences of calls is 
used by the back-end part. For comparison, two 
baseline classifiers commonly used for anomaly 
detection are used: k-nearest neighbor (kNN) 
and k-means clustering (kMC). Through diverse 
experiments on public benchmark datasets 
- mainly on ADFA-LD dataset - the validity 
and effectiveness of the proposed method is 
demonstrated.

Vinayakumar et al., 2017 [59] evaluated the 
effectiveness of various traditional ML methods 
(logistic regression, naive Bayes, k-nearest 
neighbor, decision tree, AdaBoost, random forest, 
support vector machine) and DNNs (MLP, DBN) in 
NIDS. For training and evaluation, the KDD Cup ‘99 

and NSL-KDD datasets were used, in both binary 
and multiple-classes classification settings. DNNs 
performed better in most of the cases. That was 
mainly due to their capability to pass information 
through several layers for hierarchically learning 
the underlying hidden patterns of normal and 
attack network connection records, and to 
finally aggregate the learned features of each 
layer together to effectively distinguish further 
between such records.

Also Vinayakumar et al., 2017 [60] modeled 
network traffic as time-series, particularly TCP/
IP packets in a predefined time range, with 
supervised learning methods on various deep 
architectures such as MLP, CNN, CNN- RNN, CNN-
LSTM and CNN-GRU, using millions of known good 
and bad network connections. For evaluating these 
approaches, the KDD Cup ‘99 dataset was used. 
Comprehensive analysis of all the architectures with 
their topologies, network parameters and network 
structures was done to select the optimal ones. 
Experiments showed that the used various CNN 
architectures performed better than traditional ML 
classifiers. This was mainly due to the CNN capability 
to extract high level feature representations that 
represent the abstract form of low level feature 
sets of network traffic connections.

Leila Mohammadpour et al., 2018 [61] proposed 
a deep learning method to implement an effective 
and flexible NIDS using CNN and DL for binary 
classification (normal vs. abnormal cases) on 
the NSL-KDD benchmark dataset. Experimental 
result of 99.79% detection rate on the test dataset 
showed that CNNs can be successfully applied as 
learning method for NIDS.

Shone et al., 2018 [62] presented a deep learning 
technique for NIDS, using non-symmetric deep 
autoencoder (NDAE) for unsupervised feature 
learning. They also proposed a novel deep 
learning classification model on stacked NDAEs 
using GPU, evaluated using the benchmark 
KDD Cup ‘99 and NSL-KDD datasets. Promising 
results have been obtained, demonstrating 
improvements over existing approaches and 
strong potential for use in modern NIDS.

Application of DNNs is analyzed also by Rahul 
Vigneswaran et al., 2018 [63]. DNNs were utilized 
to predict attacks on NIDS using KDD Cup ‘99 
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dataset for training and benchmarking the 
network. For comparison purposes, training is 
done with several other classical ML algorithms 
and DNNs with 1 to 5 hidden layers on the same 
dataset. A DNN with 3 layers showed superior 
performance over all the other classical ML 
algorithms.

MALWARE DETECTION
Malware (from malicious software) refers to any 

software intentionally designed to cause damage 
to a computer (standalone or in a network) once 
somehow introduced into this one. It can be in 
the form of executable code, scripts, or other 
active content, and is often referred as computer 
viruses, worms, Trojan horses, ransomware, 
spyware, adware etc. Malware is acting against 
the interest of the computer user. It may disrupt 
data files in the system reducing performance 
and increasing vulnerability. In some cases it 
will lead to total corruption of the host system. 
Malwares are easily passed through various 
environments using unauthorized software tools. 
One strategy for protecting against malware is to 
prevent the malware from gaining access to the 
target computer. Antivirus software and firewalls 
are protecting against the introduction of 
malware in addition to checking for the presence 
of malware and malicious activity and recovering 
from attacks.

Dahl et al., 2013 [64] presented a large-scale 
malware classification system which utilizes 
random projections to reduce the input space. 
Neural networks trained on random projections 
provided a 43% reduction in the error rate 
compared to the baseline logistic regression 
system using all the features. The obtained 
0.49% two-class error rate for the one-layer 
neural network with random projections and 
0.42% two classes error rate for the ensemble 
of neural networks offered state-of-the-art 
performance. GPUs were employed for training 
with 2.6 million examples in less than three 
hours. No accuracy gain was obtained by adding 
additional hidden layers, two and three hidden 
layers models even performed slightly worse.

Yuancheng Li et al., 2015 [65] proposed a hybrid 
malicious code detection scheme based on deep 

learning: first, reducing dimensionality of the 
data with an AutoEncoder by using AE’s ability 
to abstract the main characteristics (features) 
of the input data; then, based on these, setting 
a DBN as the classifier for several times deep 
learnings; finaly, improving the detection 
accuracy and reducing the time complexity of the 
hybrid model. Experiments employed the KDD 
cup ‘99 dataset. Results showed that compared 
with the detection method using single DBN, the 
proposed method improves detection accuracy 
while also reducing the time complexity of the 
model. However, proposed method still needs 
further improvements for better performance.

Saxe and Berlin, 2015 [66] introduced a malware 
detector based on DNN using static features that 
obtains a usable detection rate at an extremely 
low false positive rate and scales to real world 
training example volumes on un-expensive 
hardware. Its performace approach traditional 
labor-intensive signature based methods, while 
also detecting previously unseen malware. These 
were achieved by directly learning on all binaries, 
without any filtering, unpacking, or manually 
separating binary files into categories. The full 
classification framework consists of three main 
components. The first component extracts four 
different types of complementary features from 
the static benign and malicious binaries (Byte/
Entropy Histogram Features, PE Import Features, 
String 2D histogram features; PE Metadata Features). 
The second component is a DNN classifier, which 
consists of an input layer, two hidden layers with 
parametric ReLU activation function, and an output 
layer with sigmoid activation function for prediction. 
The final component is a score calibrator based 
on a Bayesian calibration model, which translates 
the output of the neural network to a score that 
can be realistically interpreted as approximating 
the probability that the file is actually malware.  
A brief discussion is made to show how to prevent 
overfitting by dropout, and how PReLU and weight 
initialization with backpropagation method helps in 
speeding up the learning process over the network.

Pascanu et al., 2015 [67] proposed an approach 
similar to natural language modeling, that learns 
the language of malware spoken through the 
executed instructions and extracts robust, time 
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domain features through a random temporal 
projection technique. Echo state networks 
(ESNs) and RNNs are used for the projection 
stage that extracts features. These models are 
trained in an unsupervised manner. A standard 
classifier uses these features to detect 
malicious files. A few variants of ESNs and 
RNNs were experimented for the projection 
stage, including max-pooling and half-frame 
models, as well as logistic regression for final 
classification. The best performing hybrid 
model improved the true positive rate by 
98.3% compared to the standard tri-gram of 
events model, at a false positive rate of 0.1%.

Huang and Stokes, 2016 [68] presented a 
multi-task deep learning architecture for 
malware classification for binary malware 
classification task (malware vs. benign). All 
models are trained with data extracted from 
dynamic analysis of malicious and benign 
files. They found improvements using multiple 
layers in a DNN architecture for malware 
classification. The system was trained on 
4.5 mil. files and tested on a holdout test 
set of 2 mil. files. Objective functions for 
the binary classification task and malware 
family classification task are combined in the 
multi-task architecture. They also proposed a 
non-multi-task malware family classification 
architecture.

Rahul et al. [69], 2017 applied deep learning 
techniques to classification of network 
protocols and applications using flow features 
and data signatures. They also presented a 
similar classification of malware using their 
binary files. CNN with ReLU and dropout, and 
AE were employed with own dataset for traffic 
identification, and Microsoft Kaggle dataset 
for malware classification tasks. Deep learned 
features in both cases are not handcrafted but 
are automatically learned form data signatures. 
They can’t be understood by an attacker or 
malware, therefore can’t be easily bypassed.

Vinayakumar et al., 2017 [70], evaluated 
shallow and deep networks for the detection 
and classification of ransomware using API 
calls made by executables. For selecting 
best MLP architecture, various experiments 

related to network parameters and structures 
were done. Results obtained on their dataset 
for binary classification of executables (as 
either benign or ransomware) attained highest 
accuracy 1.0, while for multiple classification 
of ransomware in categories highest accuracy 
obtained was 0.98. MLP performed better than 
other classical ML classifiers in detecting and 
classifying ransomwares.

Maniath et al., 2017 [71] applied deep learning 
with LSTM networks for binary sequence 
classification of API calls. An automated 
approach to extract API calls from the log of 
modified sandbox environment and detect 
ransomware behavior was presented. This was 
expected to improve the automated analysis of 
large volume of malware samples.

As Android devices became very spreaded 
in day by day use, malware detection on 
Android platform gets nowadays of big interest.  
Deep learning along with NLP appear very 
appropriate for such tasks.

Zhenlong Yuan et al., 2016 [72] proposed to 
associate the features from static analysis with 
features from dynamic analysis of Android apps 
and characterize malware using DL techniques 
with DBN. They implemented an online DL-
based Android malware detection engine 
(DroidDetector) that can automatically detect 
whether an app is a malware or not. Also, 
performed an indepth analysis on the features 
that deep learning essentially exploits to 
characterize malware. The results showed that 
DL is suitable for characterizing Android malware 
and especially effective with the availability of 
more training data. DroidDetector can achieve 
96.76% detection accuracy, which outperforms 
traditional ML techniques.

Xiao et al., 2017 [73] considering some semantic 
information in system call sequences as natural 
language, treated one such sequence as a sentence 
and constructed a classifier based on the LSTM 
language model with effective number of hidden 
layers to achieve better result. Two LSTM models are 
trained using system call sequences from malware 
and benign apps. At classification, two similarity 
scores are computed, the greater one indicating 
whether the analyzed app is malware or not.
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Nix and Zhang, (2017) [74] focused on 
classification of Android apps using system 
API-call sequences and investigating the 
effectiveness of DNNs for such purpose, based 
on their ability to learn complex and flexible 
features that may lead to timely and effective 
detection of malware. They designed a CNN 
for sequence classification and conducted a 
set of experiments on malware detection and 
categorization of software into functionality 
groups, to test and compare it with classifications 
by LSTM-RNN and other n-gram based methods. 
Both CNN and LSTM significantly outperformed 
n-gram based methods, and surprisingly, the 
performance of CNN was also much better than 
that of the LSTM.

SPAM AND PHISHING DETECTION
Spam email is referring unsolicited, undesired, 

or illegal email messages massively broadcasted 
to many email accounts. Phishing is a cyber-crime 
technique consisting in a fraudulent attempt to 
obtain sensitive information such as usernames, 
passwords, bank accounts, credit card details etc. 
by disguising as a trustworthy entity. These issues 
can be treated by using deep learning techniques 
with natural language processing (NLP).

Verma et al., 2018 [52], Anti-Phishing Pilot at ACM 
IWSPA 2018, evaluated phishing techniques over 
email using new metrics for unbalanced dataset. 
Various techniques used for feature extraction 
are discussed, such as: term frequency-inverse 
document frequency (TF-IDF), non-negative 
matrix factorization (NMF) and bag of words 
etc. Algorithms as: random forest (RF), logistic 
regression, k-nearest neighbor and multi-nominal 
naive Bayes were mostly used, but also some deep 
learning ones, using CNNs, RNNs, LSTMs.

Zhang and Yuan, 2012 [75] applied multi-layer 
feedforward neural networks to phishing email 
detection and evaluated the effectiveness 
of this approach. They designed the feature 
set, processed the phishing dataset, and 
implemented the neural network (NN) systems, 
then used cross validation to evaluate the 
performance of NNs with different numbers 
of hidden units and activation functions.  
They also compared the performance of NNs 

with other major ML algorithms. From the 
statistical analysis, concluded that NNs with 
an appropriate number of hidden units can 
achieve satisfactory accuracy even when the 
training examples are scarce. Moreover, their 
feature selection is effective in capturing the 
characteristics of phishing emails, as most ML 
algorithms can yield reasonable results with it.

Lennan et al., 2016 [76] discussed about 
the NLP feature extraction techniques using 
methods such as character level embedding and 
word embedding. A comparative study is made 
among support vector machine (SVM) using 
character level and CNN using both character 
and word embedding techniques. CNN using 
word embedding showed better results.

Vinayakumar et al., 2018 [77] showed a new 
LSTM approach in which dataset is considered as 
a hierarchical email architecture by considering 
it as sentences and words. Bi-directional LSTM is 
used for both cases which helps in computing the 
weights and estimates the phishing probability 
over the data during the network computation.

Shima et al., 2018 [78] used neural network 
and DL for classification of URL strings used for 
phishing sites. First, feature vectors from URL 
strings are generated, that are then applied to 
a linear NN with three layers, in a very light and 
compact topology.

DETECTION AND CLASSIFICATION OF DOMAIN 
NAMES GENERATED BY DGAS

Domain generation algorithms (DGAs) are 
algorithms used by various families of malware 
that are used to periodically generate a large 
number of domain names that can be used as 
rendez-vous points with their command and 
control servers. This way, attackers are avoiding 
the possibility of blacklisting “hardcoded” 
domain names. Infected computers will attempt 
to contact some of these domain names every 
day to receive updates or commands.

Some research papers addressed the use of 
deep learning for detecting malicious domain 
names (2016-2018) [79], [80], [81], [82], [83], [84]. 
They showed that DL algorithms using CNNs, 
RNNs and LSTM, performed well in comparison 
to traditional ML algorithms (slow and poor in 
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performance) and, moreover, DL algorithms 
remain robust in adversarial environments.

TRAFFIC ANALYSIS
Smit et al., 2017 [85] proposed using deep 

learning techniques for network traffic 
classification. This paper investigates the 
viability of using deep learning for traffic 
classification, with a focus on both network 
management applications, and detecting 
malicious traffic. Preliminary results showed 
that a highly accurate classifier can be created 
using the first 50 bytes of a traffic flow.

Wang, 2017 [86] proposed a method that is based 
on ANN and DL. Results showed that approach 
works very well on the applications of feature 
learning, unknown protocol identification and 
anomalous protocol detection.

Deep packet framework for automatically 
extracting features from network traffic using a 
DL method is proposed in [73]. These packets 
help to handle sophisticated task like multi 
challenging traffics etc.

BINARY ANALYSIS
Binary code analysis is an important 

component in cyber security, which looks into 
raw binary codes in search of vulnerability issues. 
Static analysis can understand the pattern of 
the software code to find possible weaknesses. 
Nowadays, automated analysis method is 
combined with DL method, which has surpassed 
the pattern-based limitations [87]. Shin et 
al., 2015 [88] showed that RNNs could identify 
functions in binaries with greater accuracy and 
efficiency (i.e. higher learning and recognition 
speed) than other state-of-the-art traditional 
ML-based method. To rectify gradient descent 
over the hidden layers, optimization is done 
with RMSprop method. Benchmarks for various 
network architectures (RNN, bi-directional RNN, 
LSTM and GRU) with 1 or 2 hidden layers of 
various dimensions (8 or 16) are analyzed. Bi-
directional RNN proved to be the best.

Katz et al., 2018 [89] showed a novel technique for 
decompiling binary code snippets using a model 
based on RNNs. The model learns properties and 
patterns that occur in source code, and  uses them 

to produce decompilation output.
Zheng Leong Chua et al., 2017 [90] presented a 

new system, EKLAVYA, which helps in recovering 
function type signatures from disassembled 
binary codes using RNN network. Argument 
recovery module on RNN is implemented 
using techniques like saliency mapping and 
sanitization. This system helps in learn calling 
conventions and idioms with high-level accuracy 
parameter.

Lee et al., 2017 [87] discussed DL of assembly 
code, which helps to analyze the software 
weakness. A CNN and a Text-CNN model are 
trained using vectors created by Instruction2vec 
and Word2vec from assembly code of existing 
functions, and then new functions are classified 
whether have software weakness (vulnerabilities) 
or not. Text-CNN trained with vectors generated 
by Instruction2vec provided higher accuracy in 
classification.

CONCLUSION
Cyber security is dealing every day with 

new kind of threats, more and more able to 
dissimulate and change their code, patterns 
and manifestations for avoiding IDSs.  
The spectacular results obtained in the last 
years by DL in various domains, together with 
the ability of DNN models and architectures (i.e. 
MLP, CNN, AE, RNN, LSTM etc.) in catching and 
learning intimate structures of data without 
any previous “manual” feature extraction or 
engineering, and to automatically clusterize 
data and/or make classification/prediction on 
new data, make them to be very appropriate 
and promising in most of the various use-cases 
of cyber security applications, for building new 
powerful and flexible intrusion detection systems 
(both HIDS and NIDS). Deep learning is already a 
prominent technique employed in several cyber 
security areas. DL algorithms proved to provide 
robust and effective solutions to solve various 
problems with better results than “classical” ML 
and other traditional methods. However, deep 
learning may be used concurrently with other 
automation techniques, like rule and heuristics 
based ones and also other ML techniques.  
Yet, artificial neural networks (ANNs) may be 
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attackers could somehow modify inputs to ANNs 
in such a way that will lead to misclassification 
of those inputs (adversarial attacks). [91]

also vulnerable to possible hacks and deception. 
Thus, even if difficult, by identifying patterns 
used by such systems in their functioning, 
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