
87Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

Raising awareness of cyber
security concerns regarding
the use of USB peripherals

INTRODUCTION
The USB protocol was first developed in 1996

by USB-Implementers Forum (USB-IF) in order to
establish an universal communication protocol
between different kinds of IT&C systems. Over
the time, the protocol has gained a widespread
popularity through its continuous improvement
in terms of speed performance and small
form factor interface size. In the nowadays,
the USB physical interface or the USB port, as
it is commonly referred to, it is being used to
connect different kinds of devices (in example:
hid, input/output, storage, audio-video or IoT
devices) to a large set of hosts (in example:
PCs, laptops, servers, tablets, smartphones and
more). Starting from the versions USB 1.0 and
1.1 with speeds as low as 1.5 Mbps, the protocol
specifications evolved over the years with
version 2.0 reaching a maximum speed of 480
Mbps and with the version 3.0 that can transfer
data at the maximum rate of 5Gbps. The latest

version, USB 3.1, can make use of a maximum
bandwidth of 10Gpbs The latest version, USB
3.1, can make use of a maximum bandwidth of
10Gpbs, that reinforces and strengthens once
more the USB protocol in the leading position of
the interoperability and data transfer ranking.
One special particularity is that newer versions
are backward compatible with the older devices
meaning that a USB 2.0 device can be plugged
and used with a superior USB 3.0 capable
system.

The USB protocol is a host controlled
communication which means that each and
every transaction is first initiated by the host.
In order to establish a USB transfer it requires
the presence of two types of controllers: host
and device. Two hosts can’t exchange data
directly, nor two devices with the exception of
OTG (On-The-Go) devices. In the OTG, one device
is setup as master and the other one as slave.
In the USB protocol, the host is responsible for

Marian TICU
National Cyberint Center

marianticu89@yahoo.com

Abstract: The number and variety of types of attack vectors used by hackers are steadily
increasing. The cyber attackers are constantly trying to adapt to the protective measures
taken as a response to their actions and are searching for new methods to infect a system
apart from the traditional infection methods that require the user to click on a link or
run a file. One of these methods is the use of a USB device, specially built to incorporate
malicious activities.
There are currently both open-source projects and commercial products that use
programmable USB devices which can be configured for malware purposes. The attacker
can choose between building its own device or buying it. Either way, we need to be informed
in order to be prepared for proactive defense against these cyber-attacks vectors.
Keywords: awareness, cyber-attacks, rogue, USB, device, kill-switch, protection, malicious

88 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

initiating all the transfers. There are four types
of transfers with different functionalities
and specifications: control, bulk, interrupt,
isochronous. The control transfer type is used
when the host exchanges data with device in
order to identify the device capabilities in
order to assign the proper driver for it. The
bulk is the preferred transfer mode when
time is not critical. It is the fastest transfer
mode and it is being used to transfer large
files to devices like printers or disk drives.
The interrupt transfer mode is used by HID
devices (mice, keyboard, game controllers)
to transmit the data without any delay based
on the device generated interrupts. The
isochronous transfer type it is being used
for data streaming in cases when the data
must be transferred at constant rates within
a time limit and with an error acceptance or
tolerance. Some of the devices that uses this
transfer mode are audio and video devices.

Each USB device holds a descriptor hierarchy
that is used by the host to identify the
device and discover its capabilities. There
are five common USB descriptors: device,
configuration, interface, endpoint and string
descriptors. An USB device can have only one
device descriptor and this can offer contextual
information about the device connected to the
host. It holds a data structure that includes the
vendor ID and product ID, the USB version, the
maximum packet size and the number of the
configurations defined on the device. Although
the device can support multiple configurations,
only one can be enabled at once. For each
configuration, the descriptor specifies
electrical connection details and interface
information. The interface is associated with a
device capability or functionality specified by
some well known values for protocol, class or
subclass fields in the interface descriptor. For
example, if the class field in the interface has
the value 0x03h then we can certainly conclude
that the device attached to the host is an HID
- human interface device, probably a keyboard
or a mouse. If the same class field contains the
value 0x07h then the device connected to the
system is probably a printer.

A CYBER SECURITY PERSPECTIVE
OF THE WELL-KNOWN USB BASED
ATTACKS

Cyber attacks using USB devices are constantly
expanding over the years and are using increasingly
diversified methods. The attackers have turned
their attention to develop custom devices or
reprogramming existent USB devices for malicious
purposes. This fact leads to a new infection method
which is hard to identify even by highly skilled IT
personnel because the devices, also known as “bad
peripherals”, act, look and feel as regular but it also
incorporates other hidden functions.

Depending on the actions targeted by the
hackers, the bad USB devices can be grouped
into the following self-describing categories:

• Keystroke injection
• Malware delivery
• Data exfiltration
• Network traffic hijack
• Electrical damage
• Data alteration
• Video sniffing
The following section introduces a series of USB-

based cyber-attacks along with their operating
principles and associated category tags:

a) Rubber Ducky - operating principles: the
device acts as a normal USB mass storage device
and includes a hidden keyboard that can be
used to send commands to the host computer
by injecting keystrokes. The storage space can
be used to deliver malware or to exfiltrate data
to/from the host. Tags: keystroke injection,
malware delivery, data exfiltration.

b) BashBunny - operating principles: small
form factor computer running Linux and powered
from the USB bus that can be used to simulate
a keyboard or a mouse, a mass storage device
or an USB external network card. Tags: malware
delivery, keystroke injection, data exfiltration,
network traffic hijack, data alteration.

c) PHUKD/URFUKED - operating principles:
similar functions as the Rubber Ducky but can be
configured to add a time delay to the malicious
keystrokes injection. Tags: keystroke injection,
malware delivery, data exfiltration.

d) USBdriveby - operating principles: emulates a
keyboard and a mouse in order to install a backdoor

89Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

on a MacOS computer; it can also change the DNS
settings of a host. Tags: keystroke injection.

e) Evilduino - operating principles: it uses
an Arduino microcontroller to launch similar
attacks as the PHUKD/URFUKED. Tags: keystroke
injection, malware delivery, data exfiltration.

f) Unintended USB channel - operating
principles: it can be used to exfiltrate data
from a host computer by toggling the leds on a
USB keyboard or by playing special sounds on
speakers. Tags: data exfiltration.

g) TURNIPSCHOOL (COTTONMOUTH-1) - operating
principles: special USB cable that hides inside it a
microcontroller capable of sending and receiving
data over RF communication. Tags: keystroke
injection, data exfiltration, malware delivery.

h) RIT attack via USB mass storage - operating
principles: the Read It Twice attack allows an
attacker to install malware software as an update.
This can be achieved because the “check firmware”
and “install firmware” phases of the update process
aren’t executed in a single atomic operation, and
the update package can be substituted after the
“check” process. Tags: malware delivery.

i) KeySweeper - operating principles: it uses
an Arduino to wirelessly sniff, decrypt, log
and report the keystrokes from any Microsoft
wireless keyboards. Tags: data exfiltration.

j) Default Gateway Override - operating principles:
uses a microcontroller as an USB Ethernet adapter
and can override DHCP settings in order to capture
network traffic. Tags: network traffic hijack.

k) Smartphone-based HID attacks - operating
principles: Android USB gadget driver that
can simulate the keyboard and mouse. Tags:
keystroke injection.

l) DNS override - operating principles: similar to
the Default Gateway Override infection method,
but this device overrides the DNS settings. Tags:
data alteration.

m) Hidden Partition - operating principles: the
USB flash drive has a hidden partition that can
be used to save and exfiltrate data on it. Tags:
data exfiltration.

n) Virtual machine break-out - operating
principles: the firmware on a USB device can be
used to evade from a virtual machine environment.
Tags: malware delivery, data exfiltration.

o) Boot Sector Virus - operating principles:
reprogrammed USB device can be used to infect
a computer before boot. Tags: malware delivery.

p) iSeeYou - operating principles: the Apple
internal iSight webcam can be reprogrammed
to covertly capture the video without lighting
the LED. Tags: video sniffing.

q) Autorun Exploits - operating principles: it
can run specific applications from a flash drive
if autorun is enabled. Tags: malware delivery.

r) Cold Boot - operating principles: it can dump
data from RAM by fast rebooting the system and
booting from a USB device with memory dump
software. Tags: data exfiltration.

s) USB Thief - operating principles: the attacker
infects portable software that can be run from an
USB mass storage device; after being executed
the malware will stole data and save it to the
flash drive. Tags: data exfiltration.

t) USBee attack - operating principles: it is being
used to exfiltrate data using an USB connector
that can transmit data over electromagnetic
emissions. Tags: data exfiltration.

u) USB Killer - operating principles: special USB
device that can deliver an electrical surcharge to
the target computer that conducts to damaging
the system. Tags: electrical damage.

In addition, we can summarize that almost
all the bad USB devices covered in this article,
with small differences, share almost the same
operating principles that involves reprogramming
a microcontroller to emulate HIDs (keyboard
and mouse), Mass Storage (flash drive) or RNDIS
(network card) devices allowing the attacker to
run predefined commands on target hosts, install
and execute malware or sniff and steal data.

IS THERE ANY WAY OF IDENTIFYING
THE ROGUE USB DEVICES?

Regardless of the above-mentioned methods
and devices that an attacker might be using,
except the USB killer, the data travels on the USB
bus from host to device or vice-versa. I would
describe the need as the possibility to unveil all
hidden features of an USB device before using
it while still maintaining considerable interest
for capturing and analyzing the content of the
exchanged data. Even though we are dealing with

90 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

some rogue USB devices which besides standard
features they also incorporate some other hidden
capabilities, in order to work on a target computer,
the devices must be fully compliant with the USB
protocol. In other words, this means that we can
use the existing USB protocol debugging tools
for evaluating and identifying USB functionalities
including the hidden ones. From a technical
perspective this can be accomplished by analyzing
all the interfaces published by an USB device in the
enumeration phases at the device, configuration
and interface levels. In example, a standard storage
device usually have only interfaces registered in
the 0x08h base class which is associated to mass
storage devices. The recording of another type
of interfaces other than the ones intended for
the scope of device, for example a 0x03h class
interface which is associated with a keyboard or a
mouse and it is registered by an USB memory stick,
should be a relevant starting point for identifying
rogue devices. What if we are dealing with a rogue
keyboard registered as a normal standard HID
device but it has malicious keystroke injection
capabilities? In this particular case, in order to
distinguish the legitimate user activity from the
illegal, we must focus on capturing, analyzing
and extracting information from the USB traffic.
The activity of capturing the USB traffic is
relatively easy compared to its analysis operation
that requires advanced knowledge and skills in
the field of USB protocol comprehension.

HOW CAN WE PROTECT OURSELVES OF
NOT BECOMING A TARGET OF AN USB
ATTACK?

INCREASED ATTENTION WHILE USING DOCKING
CHARGING STATIONS IN PUBLIC PLACES

Our lives are increasingly interconnected with
digital devices. In certain situations, we rely solely
on the information provided by the electronic
devices we own and we are conditioned by their
availability and state of operation. Whether
we are referring to an electronic boarding pass
required for a flight, or do we need to use the
GPS application on our smartphone to guide us
in an unknown city, or do we need to access and
respond to a critical e-mail message, these are

just a few real life situations when our devices
are indispensable in our lives. Every mentioned
aspect is restricted around the availability of
the electronic devices we are accustomed to,
and in turn they are conditioned on the battery
life. We often get to use the docking charging
stations available in public places such as airport
lounges, trains or waiting rooms. We use these
charging facilities, even if our devices are partially
charged whenever we have spare time, because
we may not know when we may need them and
we like to keep our electronic devices online as
long as possible. Of course, the benefits of using
these charging docks are visible but do we take
into consideration the concerns regarding cyber
security? Probably, not. Is there any possibility
that these charging docks could be tampered by
potential attackers? Probably, yes. How can we
still use the charging docks without the fear that it
could be infected and it could infect our devices?
The solution is pretty straight-forward in terms
of using charge-only cables or adapters. The USB
socket has four pins, the pins inside, in the middle,
are responsible for data transfer, while the outside
pins are used to provide a 5 volt power supply.
A charge-only cable uses only the charging
pins. This is a workaround solution and it is not
recognized by the USB Implementers Forum.

DO WE PROTECT OURSELVES FROM INFECTING
OUR DEVICES OR DO WE PREVENT INFECTING
OTHERS THROUGH OUR INFECTED DEVICES?

Starting from the hypothesis that an infected
device can infect others we must acknowledge
the fact that we can both fulfill two roles: one as
a victim and afterwards, without our will, we can
play the role of the attacker. The widespread of the
USB protocol across a large set of devices and the
diversified workflows and scenarios that assumes
plugging in the same device between different
information systems could introduce new concerns
regarding cyber security. We adopted and already
using in our lives a wide range of IoT, wearables,
gadgets, fitness, health monitoring devices and
more. Lots of them are using the USB protocol for
transferring data. These devices are plugged in
and plugged out numerous times to a lot more set
of devices. Hypothetically speaking, what could

91Spring 2019, No. 1, vol. 1 / Romanian Cyber Security Journal

ROCYS 2019, Spring Edition

happen if all of these could get infected one day?
We enjoy listening our favorite songs while driving
the car from an USB memory stick. We could be
using the same storage device to transfer some
data to or from a computer, an IoT, a smart home
automation solution, a video surveillance system
and to a lot more set of devices. Some of the
systems are not critical and their malfunctioning
is not a cause for concern, but others are and
our imagination is just a limit for scenarios that
could happen. Maybe our climate control system
could be hacked one day through an USB device
when loading or storing configuration or firmware
updates. By analogy, the theory can be extended
to any equipment that has an UBS port, starting
from home use apparels like a washing machine,
an electric over or the alarm and the video
surveillance systems and reaching topics that
could go as far as infecting a car’s entertainment
system. Taking into consideration all these facts,
is it justified to be more aware and to act with
caution when we are establishing connections and
we are making transfers between devices? Well, we
probably should. In addition to all the mentioned
aspects, we should not, whatsoever, connect lost
and found USB capable devices to our systems.
Not even from curiosity. The reasons explained
above are, for the time being, purely theoretical,
and have the role of raising awareness and stirring
up talks rather than proposing solutions.

PROPOSALS FOR PROTECTION METHODS
AGAINST USB-BASED CYBER ATTACKS

The most common scenario encountered in
practice addresses the infecting of common
computer systems, whether we refer to a PC,
laptop or server. In this section we will take
into consideration the possible solutions to
our problem and we will discuss advantages or
disadvantages.

One of the first approaches refers to limiting the
use of the USB devices on a host to a restricted
subset of well-known devices. This thought has
already been implemented by many software
solutions which basically are using a previously
defined whitelist of allowed devices, blocking the
communication for each and every other device.
This kinds of software are building a whitelist

using some unique fields that specifically identify
one device. Nonetheless, there is an workaround
because special crafted USB devices can be forged
to spoof any required field in order to bypass the
protection. Speaking in terms of directly connecting
the USB device to the host, it could also theoretically
exploit other sections of the protocol itself before
reaching the phase where the software decides if
the inserted device matches a record in the whitelist.
If the exploitation succeeds, it could also disable
any USB protection software and giving it a free
undisturbed pass to the OS. Although it provides
a certain level of limited security, this solution can
prove useful in preventing cyber-attacks launched
from unknown devices.

Another way of thinking a defense mechanism is
to introduce another node in the communication
channel. The design is similar to the proxy
concept. Basically, a new device is inserted on the
communication path between the device and the
host itself and has the job to forward each packet
to destination in a similar man-in-the-middle
configuration. The proxy device must have both
types of USB controllers, host and device, in its
hardware configuration. In a theoretical model,
the proxy solution could act as an Intrusion
Prevention System borrowed from the computer
networks domain. It could detect and block
any USB transaction that matches a previously
defined rule or it could identify any traffic anomaly
starting from a baseline traffic. There are some
experimental solutions developed by various
computer scientists or industry specialists.
Although this solution model is very advanced and
can be used to detect and take actions on both
statistical and anomaly data, it has some flaws.
Given the circumstances that the proxy software
solution runs on top of a operating system, one
could directly exploit the operating system using
an USB device before reaching the higher levels of
the proxy application and infect it with malware.
After infection, this could spread to the final host
which we are trying to protect.

The last theoretical method proposed in this
paper is the conclusion resulted from the previous
two discussed methods. This means that we are
taking into consideration the facts that installing
an USB protection software directly on the host

92 Romanian Cyber Security Journal / vol. 1, No. 1, Spring 2019

ROCYS 2019, Spring Edition

or adding a new proxy in the USB communication
path could improve protection but it won’t fully
solve the problem because the rogue USB device
could exploit the host operating system at a
lower level, before reaching the protection levels
implemented by the application. The last method
implies sniffing the USB traffic between the device
and the host and mirroring it to a promiscuous
capturing interface of a totally isolated system.
This system should have the capability to analyze
the USB traffic in a similar mode as an IPS, in a
time slice as close as possible to near real time. In
the eventuality of matching any USB transaction
packet with some previously well-defined rules,
the system should take the decision to physically
interrupt the USB cable between the device and the
host and thus prevent other further actions. This
approach acts like an controlled USB kill switch
depending on fulfilling of certain conditions. The
proposed method can prove to be very useful if
the system is fast enough to shut down the USB
link as fast as possible after detecting a pattern
matching a signature or an anomaly.

CONCLUSIONS
USB-based cyber-attacks are a reality of our

times and we need to understand the risks we and
our systems pose when using USB devices from
unknown sources or when connecting our own USB
devices to other systems. This paper offers a short
brief over some of the USB based cyber-attacks

and contributes to the general improvement of
the awareness in term of cyber security.

Although in the field of cyber security there is no
security solution that can guarantee a success rate
of 100%, the methods proposed in this article can
add an extra layer of security to your systems. It is
always better to prevent than to correct possible
actions of malicious rogue USB devices.

The rogue USB devices intended for malware
purposes are using legitimate mechanisms
in the USB protocol to perform both normal
and malicious activities. These devices take
advantage of the fact that the USB protocol was
built to provide support for composite or multi-
feature devices by implementing multi-interface
configurations. Taking into consideration the fact
that the USB protocol allows them to perfectly
disguise along legitim devices, proves to be very
difficult to defend against the actions performed
by these devices. Device filtering using whitelisting
proves to be inefficient because the attackers can
spoof almost every string or parameter in the
descriptor configurations.

The unpleasantness caused by these devices could
be avoided by implementing a near real time USB
traffic analyzer capable of matching and identifying
patterns using a principle similar to a network IPS.
The protection could be accomplished through the
use of an USB kill switch which refers to physical
interrupting or disconnecting the communication
channel between the host and de device.

References
[1] Brian Anderson, Barbara Anderson. (2010). Seven Deadliest USB Attacks. Oxford, GB: Syngress, Elsevier, INC.
[2] Kamkar, S. (2018, 07 01). KeySweeper. Retrieved from samy.pl: https://samy.pl/keysweeper/
[3] Kamkar, S. (2018, 07 01). USB driveby. Retrieved from samy.pl: http://samy.pl/usbdriveby/
[4] Karsten Nohl, Sascha Kribler, Jakob Lell. (2018, 07 01). BadUSB - On accessories that turn evil. Retrieved from
Security Research Labs: https://srlabs.de/wpcontent/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
[5] LLC, H. (n.d.). Hak5. Retrieved from BashBunny Documentation: https://www.hak5.org/gear/bash-bunny/docs
[6] Matthew Brocker and Stephen Checkoway, Johns. (2014). iSeeYou: Disabling the MacBook. Proceedings of the 23rd
USENIX Security Symposium. San Diego, CA: USENIX Association.
[7] Nir Nissim and Ran Yahalom and Yuval Elovici. (2017). USB-based attacks. Computers & Security, 675-688.
[8] TURNIPSCHOOL. (2018, 07 01). Retrieved from NSA Playset: http://www.nsaplayset.org/turnipschool
[9] USB KILL. (2018, 07 01). Retrieved from https://www.usbkill.com/
[10] Zhaohui Wang, Angelos Stavrou. (2010). Exploiting smart-phone USB connectivity for fun and profit. ACSAC ‘10
Proceedings of the 26th Annual Computer Security Applications Conference (pp. 357-366). Austin, Texas, USA: ACM
New York, NY, USA ©2010.
[11] USB Made Simple. (n.d.). Retrieved from http://www.usbmadesimple.co.uk/

