
53Fall 2022, No. 2, Vol. 4 / Romanian Cyber Security Journal

Complex Analysis of the
Behavior of Applications

Running in the Critical
Infrastructure Environment

Deniss-Bogdan ONOFREI-RIZA
National Institute for Research & Development in Informatics - ICI Bucharest

deniss.onofrei@ici.ro

Abstract: Everybody knows that famous quote “to err is human”. Therefore, it is impossible
for a human being to create something flawless, especially from a single movement
reflected in the effort of software/hardware developers. The only way human beings can
truly achieve perfection is to try again and again. The concept of testing (or the attack
supported by the need to discover vulnerabilities) is something similar; it leads to the idea
of trying to continually test something that has been built/developed, in order to ensure
that it works as intended (perfectly). Like any other thing that has been generated in this era
of the Internet, software is an extremely complicated creation, with thousands of modular
parts. Although these sequences are not mechanical (like into a machine), but transposed
into code lines, they are equally sensitive if not even more. So, the chance for one of these
to malfunction is extremely high (even one line of code generating “turbulence” is so strong
that it could lead to the destruction of the entire software).
Keywords: Critical infrastructures, secure policy, software testing, software development,
software engineering, testing tools, advanced metrics, data flow, software integration, data
security, security risks, testing frameworks, best practices.

INTRODUCTION
This study brings to the fore the complete

ways of testing software architectures treating
this case as a rather important task which
needs to be performed in several stages and
which involves the existence of specialists
prepared for operations of this type. By
default, all of these things indicate that testing
processes have an increased cost (due to the
high number of hours of work spent to deeply
examine the desired products).

This article also responds somewhat to the
question of why companies are willing to invest
so much time and money on testing their own
software (and not only).

This is why programmers and software
developers rely on testing to ensure that no
error or mistake that has been made in the code
remains unverified. They create sophisticated
testing mechanisms and develop their software
to work in difficult and strange situations,
therefore complying with market requirements.

https://doi.org/10.54851/v4i2y202206

54 Romanian Cyber Security Journal / Vol. 4, No.2, Fall 2022

ROCYS 2022 / Fall Edition

WEB AND DESKTOP APPLICATIONS
Unlike modern attacks, those used in the past

speculated on vulnerabilities discovered in the
implementation of the network stack. Most
often than not, they are conducted through the
social engineering method. Then, the target
migrates to applications (as they are a common
place where users interact with other entities).
Therefore, there are several attacks on web
applications (these are highlighted as a starting
route to the desktop applications). This type of
attack allows examiners/testers to gain access
to data or other systems on the network. XML
External Entity Processing allows the user of
XML files to gain access to functions. The SQL
injection attacks not only can allow attackers to
gain access to data stored in the database, but,
in some cases, they can also be used to gain
access to the operating system.

Not all attacks are about server infrastructure.
A cross-site scripting attack aims to gain access
to data held by a user. In addition to data related
to the operating system, this may also include
the data stored on websites to which the user
has access. Session identification information
(stored in cookies) may be used to gain access
to other systems where the user has privileges.

Web applications can be protected in several
ways/technics when they are developed. Firstly, all
data entries should be validated by each function,
even if they are generated from reliable sources.
In addition, nothing should be sent directly from
the user to a subsystem (such actions facilitating
the “command injection” attacks).

When it comes to Application layer
exploitation, attackers are looking for ways to
insert their own code in the memory space of
the application. The goal is to control the flow
of the application, altering the place where
the processor gets its instructions to execute.
The buffer overflow attacks can be used to
„push” instructions and return addresses to
stack (where the application data is stored).
If an attacker can do this, the program can be
manipulated to execute those instructions (ACE).
Another type of attack involves the structure of
memory called heap, where dynamic data is

stored. The heap spraying attack implies the
insertion of the code from the attacker into the
heap. Once there, the attacker can make the
program execute the instructions he wants.

Once the attacker has presence and
persistence in the targeted environment, he
seeks ways to propagate laterally to gain access
to other systems. This may include escalation
of privileges and studying to gain access to
systems containing more data.

DEFENSE AND RESOURCE PROTECTION
TECHNIQUES

The use of a (depth) defense approach to
network protection is a long-developed and
respected strategy. It is focused on developing
several defense thresholds (to make it more
difficult for attacks to gain access to the network
or traffic data). This ignores modern opponents
who are organised and well-funded. If there are
no dedicated detecting strategies and controls,
the slowdown of the attack will only give a short
delay in speculating about the security breach.
Defence in breadth is a way to alleviate some
of the deep defense concerns by widening the
scope of understanding how modern attackers
work. A defence in breadth approach targets the
entire network stack, providing controls, where
it is possible, to protect against attacks.

There is a new approach in the network
architecture, called the “defensive network
architecture”. It is based on the idea to lead
social engineering attacks towards usual stuff.
It also takes into account the importance of
visibility and response to the incident (because
security breaches are common and cannot be
always avoided). Memorising network and/or
system events may be essential to detection
(when many logs are collected, a system that
can manage them is needed- SIEM).

Encryption is an important concept, because
confidentiality is very important (especially
when attackers are looking for any advantage
they can get). If they can intercept messages that
are not encrypted, they may use the content of
the message by speculation. In parallel, users
will sometimes make the mistake of believing

55Fall 2022, No. 2, Vol. 4 / Romanian Cyber Security Journal

that messages sent to other users within a
system are safe (because they remain inside). By
speculative intercepting and use, unencrypted
messages may generate vulnerable events,
even at the level of encryption of memory/
storage devices.

It cannot be assumed that a disc that has been
encrypted is safe. Once someone has logged in
as a legitimate user, the disk is unencrypted.
This means that if an attacker can obtain
authenticated access, even by introducing
malware that is run as a main user, the stored
information may be accessed.

When taking into account the final result,
there are two types of encryptions. The first is
a substitution, where one character is replaced
by another. This is common in encryption
schemes such as rotation cipher and/or
Vigenere cipher. The second type consists in a
transformation mechanism (the unencrypted
message, or the simple text, is not replaced
at the character level, but the whole message
is generally transformed by a mathematical
process). This transformation can be achieved
with fixed lengths of the message representing
a block cipher; it can also be applied byte by
byte ‒ how a flow cipher works. With a block
cipher, the data size is expected to be a multiple
of the block size (the final block requiring
reinterpretation to reach the correct size).

When talking about encryption, key
management is essential. An important
element of it may be the key generation.
Pre-shared keys may be used, which may be
learned or intercepted at the time of sharing.
If a pre-shared key is not used, the key could
be derived. This can be done by employing the
Diffie-Hellman Key Exchange protocols. Using
a common starting point, both sides of the
process add value and transmit it to the other
party. Once the value has been added to the
shared key, both communicating parties use
the common value (plus random value from A
plus random value from B); after negotiating
the common key, communicating entities may
start sending encrypted messages. Processes
of this type could be used for symmetrical

keys, where the same key is used for both
encryption and decryption. The advanced
encryption standard (AES) is a common
symmetric key encryption algorithm. The AES
supports 128, 192 and 256 bits. An asymmetric
key algorithm may also be used, in which
different keys are employed for encryption
and decryption. Sometimes, this is called
“public key encryption”. A common approach
to this is the use of a hybrid crypto-system in
which public key cryptography is used to share
a session key (a symmetric key employed to
encrypt messages within the session).

The certificates, defined by X.509, which is a
subset of the X.500 digital directory standard,
are used to store information about the public
key. These include data related to the identity
of the certificate holder so that certificate
verification can be made.

Certificates may be managed using a CA (the
trusted side that verifies the identity of the
certificate holder). However, a CA is not the only
way to verify the identity. PGP uses the trusted
web model, in which individual users validate
identity by signing the public key to the people
they “know”.

A MAC is used to ensure that messages
have not been changed. This is generally a
cryptographic hash-algorithm that generates
a fixed length assimilation value from variable
length data; it can be used not only for message
authentication, but also for checking whether
the files have been modified/corrupted or not.

Full disc encryption is a commonly integrated
technique in current operating systems.
Windows developments usually use BitLocker,
although there are third-party software
solutions that can perform somewhat the same
functions; FileVault can be identified on macOS,
while Linux uses a dm-crypt incorporated
into the kernel (which requires software to be
installed to manage volume encrypting and use).
As with any encryption, the key management
is essential, and encrypted files or systems
are not protected against any forced access
action. Encrypted files are exposed to data loss
(implicitly, the key or the encryption password).

ROCYS 2022 / rocys.ici.ro

56 Romanian Cyber Security Journal / Vol. 4, No.2, Fall 2022

ROCYS 2022 / Fall Edition

DATA CLASSIFICATION
Another element that is worth considering is

the classification of data. As the main activity, this
operation helps to identify all data resources, as
well as prioritise their sensitivity or importance.
This action is vital in an attempt to implement
a security model. For example, the Biba cannot
be implemented if sensitivity or priority is not
known (since this technique needs to know who
can access reading a file at the top level and who
can write down). The Biba security model refers
to data integrity. The same principle applies to
the Clark-Wilson integrity model. Other models,
such as Bell-LaPadula, do not value integrity that
much, but privacy. On the one hand, integrity
ensures that data is not altered or corrupted by
unauthorised users. On the other hand, privacy
ensures that the data is not viewed by those who
do not have access. Security models are required
to implement mandatory access controls.

SOFTWARE ARCHITECTURE MODELS
The software architecture model plays an

important role in the ability of the final product
to be scalable and to meet the requirements of

end-users as appropriate. For this reason, the
behaviour of applications based on the main
software architecture models will be studied
in this paper (trying to discover how software
components run and interact).

By minimising the risk of commercial
propagation, the limitations of performance are
also minimised, as such architectural models are
nothing but reusable structural schemes that
may contain predefined sets of subsystems (but
also roles, responsibilities, rules and/or traffic
related to them).

Therefore, the following types will be studied
(see Figures 1-9):

a) layer-based software architecture model;
b) event-based architecture model;
c) kernel-based architecture model;
d) microservices-based architecture model;
e) shared memory-based architecture model;
f) client – server architecture model;
g) master – slave architecture model;
h) data flow filter architecture model;
i) peer-to-peer (P2P) architecture model.

Fig. 1: Layer-based software architecture model

57Fall 2022, No. 2, Vol. 4 / Romanian Cyber Security Journal

Fig. 2: Event-based architecture model

Fig. 3: Kernel-based architecture model

ROCYS 2022 / rocys.ici.ro

58 Romanian Cyber Security Journal / Vol. 4, No.2, Fall 2022

ROCYS 2022 / Fall Edition

Fig. 4: Microservices-based architecture model

Fig. 5: Shared memory-based architecture model

59Fall 2022, No. 2, Vol. 4 / Romanian Cyber Security Journal

Fig. 6: Client – server architecture model

Fig. 7: Master – slave architecture model

ROCYS 2022 / rocys.ici.ro

60 Romanian Cyber Security Journal / Vol. 4, No.2, Fall 2022

ROCYS 2022 / Fall Edition

Fig. 8: Data flow filter architecture mode

Fig. 9: Peer-to-peer (P2P) architecture model

APPLICATION ARCHITECTURE
At the application design level, it is

recommended to use known architectures or
frequently used design patterns (with results).
Native self-contained applications do not
have an external architecture, but may have
an internal one. Thus, being self-reliant, they
are not based on other systems or services. A
common application architecture is the n-tier
or multi-tier type. The multi-tier architecture

comprises the following levels: Presentation,
Application, Business Logic and Data Access.
Sometimes, the Application and Business Logic
layers are consolidated precisely to manage
the logic of the application based on business
requirements. This would be a three-level
architecture (three-tier), an implementation of
the MVC application design.

Web-type applications generally use a multi-
tier architecture. Thus, the Browser represents

61Fall 2022, No. 2, Vol. 4 / Romanian Cyber Security Journal

the Presentation layer (view). There is an
application server running, namely Java, .NET,
PHP or other programming language that
manages the logic of business and application
(controller). Finally, there is also the data
storage, most likely in the form of a database,
which is the Data Access layer.

Modern applications still use multi-tier
architectures, which are often divided into
functions or services. When an application is
viewed or designed in this way, it has a service-
oriented architecture (SOA), which means that it
is divided into services that interact with each
other. This architecture provides a modularity so
that any service can be replaced by another (with
the same input/output specification), without
the rest of the application being altered. Lately,
this approach has been adapted to generate
micro-service architectures. Micro-services
are activated via containers such as Docker or
Kubernetes. Sometimes, these containers are
implemented through a cloud service provider.
Traditional application architectures may also be
implemented using such a supplier, generating
a hybrid result ‒ some parts of the application
are local, while others are implemented through
a cloud service provider. These suppliers are
beginning to expose application developers
to new design modes. Thus, functions that are
connected to create an application have been
developed, but there is no server behind them
to which the attacker can gain access. Similarly,
the use of containers led to infrastructure
automation (so that containers and virtual
machines are built and destroyed upon request).
An attacker who obtained access to such an
environment must try again, when the system he
gained access to has disappeared.

Applications often need to store data,
whether temporary or persistent. Traditionally,
the application data was stored in relational
databases accessed using languages such as
SQL. Modern applications evolve from this
approach and start using NoSQL databases
(which may use semi-structured documents or
key values associative matrices).

CONCLUSIONS
Static techniques include both testing and

static analysis, thus representing effective
methods to identify and eliminate defects
(supplementing the results of dynamic testing).

The testing is defined throughout the entire life
cycle, both static and dynamic, and refers to the
planning, preparation and evaluation of software
and related products. The two approaches can
be used to achieve these goals. Static analysis is
an automated form of static testing.

The definitions of static analysis and static
testing are very similar, which may lead to
confusion. The definition of static analysis
applies to the forms of static testing that
are not part of static analysis. In general,
static analysis involves the use of specific
instruments. The most important difference is:
given the source code to be evaluated, dynamic
testing effectively performs the code, while
static testing (including static analysis) does not
perform these sequences subject to evaluation.

In the case of analysis processes, there is
no correct way considered to carry them out.
Instead, there are a lot of ways in which such a
process can fail, due to several factors (ranging
from organizational to human factors).

When talking about the success of an analysis
process, one of the most important aspects is
the presence of a leader in the project. He/she
must be a person with expertise, enthusiasm
and practical thinking, in order to be able to
guide the other team members.

The tools used in the analysis process must
be updated (and in good working conditions)
to facilitate the achievement of appropriate
results. In addition to all these instruments,
the checklists should also be constantly
updated. If a defective product is identified,
it is recommended to introduce a record in
the future, that will facilitate the discovery of
similar types of defects (faster).

At regular intervals, it is also recommended to
take a full analysis of the checklist, in order to
remove elements that are no longer relevant to
the current testing.

ROCYS 2022 / rocys.ici.ro

62 Romanian Cyber Security Journal / Vol. 4, No.2, Fall 2022

ROCYS 2022 / Fall Edition

Organisations should consider a security
architecture, even unrelated to the application or
network design. Thus, there is a set of data and
methodologies that guide the implementation of
security within the organisation. NIST (National
Institute of Standards and Technology – elaborator
of security measurement standards and/or its
implementation) recommends the five functions ‒
Identification, Protection, Detection, Response and
Recovery, both organizational and personnel ‒ and
it also recommends how information security or
any other potential risks should be assessed.

NIST is not the only organisation with
security recommendations, as ISO 27001 is
doing the same thing. The latter recommends
Planning, Execution, Verification and Acting.
At the same time, there is a life cycle of the
attack that identifies the phases by which an
opponent attempts to gain access to critical
systems or data. These are initial recognition,
initial compromise, establishment of support,
escalation of privileges, internal recognition,
side movement, maintenance of persistence
and mission accomplishment.

BIBLIOGRAFY
Ball, T., & Eick, S. G. (1994). Visualizing Program Slices. [Conference Presentation]. IEEE Symposium on Visual

Languages, California.
Beck, K. (1994). Simple smalltalk testing: with patterns. (The Smalltalk Report 4.2), 16-18. Retrieved from http://www.

xprogramming.com/testfram.htm
Binder, R. V. (1996). Testing object-oriented software: a survey. Software Testing Verification and Reliability, 6(34),

125-252. DOI: 10.1002/(SICI)1099-1689(199609/12)6:3/43.0.CO;2-X
Black, R. (Ed.). (2009). Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and

Software Testing (3rd ed.). New York, NY: John Wiley & Sons.
Buwalda, H., Janssen, D., & Pinkster, I. (2001). Integrated Test Design and Automation: Using the Testframe Method.

Boston: Addison Wesley.
Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object-oriented design. IEEE Transactions of Software

Engineering, 20(6), 476-493. DOI: 10.1109/32.295895
Clarke, L. A. (1989). A formal evaluation of dataflow path selection criteria. IEEE Transactions on Software Engineering,

15(11), 1318-1332.
Crowdbotics. (n.d.). 5 Common Software Architecture Patterns and When to Use Them. https://www.crowdbotics.

com/blog/5-common-software-architecture-patterns-and-when-to-use-them
Dang, A. T. (2020, October 5). Software Architecture: The Most Important Architectural Patterns You Need to Know.

Level Up Coding ‒ gitconnected. https://levelup.gitconnected.com/software-architecture-the-important-
architectural-patterns-you-need-to-know-a1f5ea7e4e3d

DataDome. (2019). Web application security best practices. https://datadome.co/bot-management-protection/web-
application-security-best-practices/

Gaffney, C., Trefftz, C., & Jorgensen, P. (2004). Tools for coverage testing: necessary but not sufficient. Journal of
Computing Sciences in Colleges, 20(1), 27-33.

Gallagher, K. B., & Lyle, J. R. (1991). Using program slicing in software maintenance. IEEE Transactions on Software
Engineering, 17(8), 751-761.

GitHub. (2018). Pragmatists / JUnitParamsPublic. https://github.com/Pragmatists/JUnitParams
Gregory, J., & Crispin, L. (Eds.). (2015). More Agile Testing: Learning Journeys for the Whole Team. Indiana: Addison-Wesley.
Hoffner, T. (1995). Evaluation and comparison of Program Slicing Tools (Technical Report LiTH-IDA-R-95-01).

Department of Computer and Information Science, Linkoping University, Sweden. https://www.ida.liu.se/
publications/techrep/95/trl95.html

ISO. (2011). ISO/IEC 25010:2011. Systems and software engineering ‒ Systems and software Quality Requirements and
Evaluation (SQuaRE) ‒ System and software quality models (Technical Report). International Organization
for Standardization https://www.iso.org/standard/35733.html

63Fall 2022, No. 2, Vol. 4 / Romanian Cyber Security Journal

ISO. (2015). ISO/IEC/IEEE 29119-4:2015. Software and systems engineering ‒ Software testing ‒ Part 4: Test techniques
(Technical Report). International Organization for Standardization https://www.iso.org/standard/60245.html

Jorgensen, P. C., & Erickson, C. (1994). Object-oriented integration testing. Communications of the ACM, 37(9), 30-38.
Kramer, A., & Legeard, B. (2016). Model-Based Testing Essentials: Guide to the ISTOB Certified Model-Based Tester:

Foundation Level. New York, NY: Wiley.
Mokito. (n.d.). Tasty mocking framework for unit tests in Java. https://site.mockito.org/
NI Business Info. (n.d.). Benefits of databases. Types of database system. https://www.nibusinessinfo.co.uk/content/

types-database-system
OWASP. (2021). OWASP Top Ten Web Application Security Risks. https://owasp.org/www-project-top-ten/
Rapps, S., & Weyuker, E. J. (1985). Selecting software test data using dataflow information. IEEE Transactions on

Software Engineering, 11(4), 367-375.
Wikipedia. (n.d.). Application security. https://en.wikipedia.org/wiki/Application_security
Wikipedia. (n.d.). List of unit testing frameworks. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
Wikipedia. (n.d.). Unit testing. https://en.wikipedia.org/wiki/Unit_testing

ROCYS 2022 / rocys.ici.ro

